Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (6): 1776-1781.DOI: 10.11772/j.issn.1001-9081.2021091627
Special Issue: 第十八届CCF中国信息系统及应用大会
• The 18th CCF Conference on Web Information Systems and Applications • Previous Articles Next Articles
Yu XIA1, Junwu ZHU1(), Yi JIANG1,2, Xin GAO1,3, Maosheng SUN4
Received:
2021-09-16
Revised:
2021-11-17
Accepted:
2021-11-26
Online:
2022-04-15
Published:
2022-06-10
Contact:
Junwu ZHU
About author:
XIA Yu, born in 1995, Ph. D. candidate. His research interests include game theory, e-commerce modeling.Supported by:
夏宇1, 朱俊武1(), 姜艺1,2, 高欣1,3, 孙茂圣4
通讯作者:
朱俊武
作者简介:
夏宇(1995—),男,江苏东台人,博士研究生,主要研究方向:博弈论、电子商务建模基金资助:
CLC Number:
Yu XIA, Junwu ZHU, Yi JIANG, Xin GAO, Maosheng SUN. Cross-regional order allocation strategy for ride-hailing under tight transport capacity[J]. Journal of Computer Applications, 2022, 42(6): 1776-1781.
夏宇, 朱俊武, 姜艺, 高欣, 孙茂圣. 运力紧张情形下的网约车跨区域订单分配机制[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1776-1781.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021091627
符号 | 解释 | 符号 | 解释 |
---|---|---|---|
司机的预期收入 | |||
平台的预期收益 | |||
订单最大可再平衡范围 | 司机再平衡任务成本 | ||
司机 | 平台对司机的支付 | ||
订单 | 再平衡任务总预算 |
Tab. 1 Parameter symbols
符号 | 解释 | 符号 | 解释 |
---|---|---|---|
司机的预期收入 | |||
平台的预期收益 | |||
订单最大可再平衡范围 | 司机再平衡任务成本 | ||
司机 | 平台对司机的支付 | ||
订单 | 再平衡任务总预算 |
符号 | 解释 | 符号 | 解释 |
---|---|---|---|
匹配子图 | 平台的预期收益 | ||
再平衡任务剩余预算 | 司机声称的成本 | ||
全局价格 | 平台对司机的支付 | ||
司机的预期收入 |
Tab. 2 List of variable symbols
符号 | 解释 | 符号 | 解释 |
---|---|---|---|
匹配子图 | 平台的预期收益 | ||
再平衡任务剩余预算 | 司机声称的成本 | ||
全局价格 | 平台对司机的支付 | ||
司机的预期收入 |
1 | 祖爽. 网约车行业战火重燃 谁能突出重围[N]. 中国商报, 2021-07-21(06). |
ZU S. Who can stand out when the war of online car hailing industry reignites[N]. China Business Herald, 2021-07-21(06). | |
2 | LI B, ZHANG D Q, SUN L, et al. Hunting or waiting? discovering passenger-finding strategies from a large-scale real-world taxi dataset[C]// Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops. Piscataway: IEEE, 2011: 63-68. 10.1109/percomw.2011.5766967 |
3 | MIAO F, HAN S, LIN S, et al. Taxi dispatch with real-time sensing data in metropolitan areas: a receding horizon control approach[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(2): 463-478. 10.1109/tase.2016.2529580 |
4 | ZHANG D Q, SUN L, LI B, et al. Understanding taxi service strategies from taxi GPS traces[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 123-135. 10.1109/tits.2014.2328231 |
5 | LIAO Z Q. Real-time taxi dispatching using global positioning systems[J]. Communications of the ACM, 2003, 46(5): 81-83. 10.1145/769800.769806 |
6 | CHEN B, CHENG H H. A review of the applications of agent technology in traffic and transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2): 485-497. 10.1109/tits.2010.2048313 |
7 | ZOU Q N, XUE G T, LUO Y, et al. A novel taxi dispatch system for smart city[C]// Proceedings of the 2013 International Conference on Distributed, Ambient, and Pervasive Interactions, LNCS 8028. Berlin: Springer, 2013: 326-335. |
8 | YANG Z D, HU J, SHU Y, et al. Mobility modeling and prediction in bike-sharing systems[C]// Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services. New York: ACM, 2016: 165-178. 10.1145/2906388.2906408 |
9 | ZHANG J B, ZHENG Y, QI D K, et al. DNN-based prediction model for spatio-temporal data[C]// Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2016: No.92. 10.1145/2996913.2997016 |
10 | LI Y X, ZHENG Y. Citywide bike usage prediction in a bike-sharing system[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1079-1091. 10.1109/tkde.2019.2898831 |
11 | MACIEJEWSKI M, BISCHOFF J, NAGEL K. An assignment-based approach to efficient real-time city-scale taxi dispatching[J]. IEEE Intelligent Systems, 2016, 31(1): 68-77. 10.1109/mis.2016.2 |
12 | SEOW K T, DANG N H, LEE D H. A collaborative multiagent taxi-dispatch system[J]. IEEE Transactions on Automation Science and Engineering, 2010, 7(3): 607-616. 10.1109/tase.2009.2028577 |
13 | ZHANG L Y, HU T, MIN Y, et al. A taxi order dispatch model based on combinatorial optimization[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 2151-2159. 10.1145/3097983.3098138 |
14 | XU Z, LI Z X, GUAN Q W, et al. Large-scale order dispatch in on-demand ride-hailing platforms: a learning and planning approach[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 905-913. 10.1145/3219819.3219824 |
15 | OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18(1): 1-11. 10.1016/0191-2615(84)90002-x |
16 | PHITHAKKITNUKOON S, VELOSO M, BENTO C, et al. Taxi-aware map: identifying and predicting vacant taxis in the city[C]// Proceedings of the 2010 International Joint Conference on Ambient Intelligence, LNCS 6439. Berlin: Springer, 2010: 86-95. |
17 | MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1393-1402. 10.1109/tits.2013.2262376 |
18 | POHLMANN T, FRIEDRICH B. A combined method to forecast and estimate traffic demand in urban networks[J]. Transportation Research Part C: Emerging Technologies, 2013, 31: 131-144. 10.1016/j.trc.2012.04.009 |
19 | SCHIMBINSCHI F, NGUYEN X V, BAILEY J, et al. Traffic forecasting in complex urban networks: leveraging big data and machine learning[C]// Proceedings of the 2015 IEEE International Conference on Big Data. Piscataway: IEEE, 2015: 1019-1024. 10.1109/bigdata.2015.7363854 |
20 | ANGELOPOULOS A, GAVALAS D, KONSTANTOPOULOS C, et al. Incentivized vehicle relocation in vehicle sharing systems[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 175-193. 10.1016/j.trc.2018.10.016 |
21 | GUDA H, SUBRAMANIAN U. Your Uber is arriving: managing on-demand workers through surge pricing, forecast communication, and worker incentives[J]. Management Science, 2019, 65(5): 1995-2014. 10.1287/mnsc.2018.3050 |
22 | LV H T, ZHANG C L, ZHENG Z Z, et al. Mechanism design with predicted task revenue for bike sharing systems[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 2144-2151. 10.1609/aaai.v34i02.5589 |
23 | 赵道致,杨洁,李志保. 考虑等待时间的网约车与出租车均衡定价研究[J]. 系统工程理论与实践, 2020, 40(5): 1229-1241. 10.12011/1000-6788-2018-2092-13 |
ZHAO D Z, YANG J, LI Z B. Research on the equilibrium pricing of ride-hailing and taxi considering the waiting time[J]. Systems Engineering — Theory and Practice, 2020, 40(5):143-155. 10.12011/1000-6788-2018-2092-13 | |
24 | 孙中苗,徐琪. 需求波动下考虑乘运供应能力的网约车平台动态定价[J]. 控制与决策, 2021, 36(6): 1499-1508. 10.16381/j.cnki.issn1003-207x.2019.1965 |
SUN Z M, XU Q. Dynamic pricing of ride-hailing platform with demand fluctuation and ridesharing supply capacity[J]. Control and Decision, 2021, 36(6): 1499-1508. 10.16381/j.cnki.issn1003-207x.2019.1965 |
[1] | . YOLOv5s-MRD: an efficient fire and smoke detection algorithm for complex scenarios based on YOLOv5s [J]. Journal of Computer Applications, 0, (): 0-0. |
[2] | Qiye ZHANG, Xinrui ZENG. Efficient active-set method for support vector data description problem with Gaussian kernel [J]. Journal of Computer Applications, 2024, 44(12): 3808-3814. |
[3] | . Path planning of multi-UAV formation based on improved artificial potential field method [J]. Journal of Computer Applications, 0, (): 0-0. |
[4] | . Dual-population dual-stage evolutionary algorithm for complex constrained multi-objective optimization problems [J]. Journal of Computer Applications, 0, (): 0-0. |
[5] | Qin LENG, Zhengyuan MAO. Two echelon location-routing optimization considering facility sizing decision [J]. Journal of Computer Applications, 2024, 44(11): 3513-3520. |
[6] | Qingyuan PENG, Xiaofeng WANG, Junxia WANG, Yingying HUA, Ao TANG, Fei HE. Review of phase transition in satisfiability problems [J]. Journal of Computer Applications, 2024, 44(11): 3503-3512. |
[7] | Renke SUN, Zhiyu HUANGFU, Hu CHEN, Zhongnian LI, Xinzheng XU. Survey of neural architecture search [J]. Journal of Computer Applications, 2024, 44(10): 2983-2994. |
[8] | Antai SUN, Ye LIU, Dongmei XU. Dynamic surface asymptotic compensation algorithm for multi-agent systems [J]. Journal of Computer Applications, 2024, 44(10): 3151-3157. |
[9] | Chaoying YAN, Ziyi ZHANG, Yingnan QU, Qiuyu LI, Dixiang ZHENG, Lijun SUN. Double auction carbon trading based on consortium blockchain [J]. Journal of Computer Applications, 2024, 44(10): 3240-3245. |
[10] | . Dung beetle optimizer algorithm with restricted reverse learning and Cauchy-Gauss variation [J]. Journal of Computer Applications, 0, (): 0-0. |
[11] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
[12] | Shanglong LI, Jianhua LIU, Heming JIA. Reptile search algorithm based on multi-hunting coordination strategy [J]. Journal of Computer Applications, 2024, 44(9): 2818-2828. |
[13] | Yan LI, Dazhi PAN, Siqing ZHENG. Improved adaptive large neighborhood search algorithm for multi-depot vehicle routing problem with time window [J]. Journal of Computer Applications, 2024, 44(6): 1897-1904. |
[14] | . Robust shapeles representation method for time series [J]. Journal of Computer Applications, 0, (): 0-0. |
[15] | HU Linbo , NI Zhiwei , CHENG Jiale, LIU Wentao , ZHU Xuhui , . Complex collaborative crowdsourcing task allocation method based on fusion community detection [J]. Journal of Computer Applications, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||