| 1 | REZAEI S, LIU X. Deep learning for encrypted traffic classification: an overview[J]. IEEE Communications Magazine, 2019, 57(5):76-81.  10.1109/mcom.2019.1800819 | 
																													
																							| 2 | VELAN P, ČERMÁK M, ČELEDA P, et al. A survey of methods for encrypted traffic classification and analysis[J]. International Journal of Network Management, 2015, 25(5):355-374.  10.1002/nem.1901 | 
																													
																							| 3 | 王炜. 网络应用层加密流量识别技术研究[D]. 郑州:信息工程大学, 2014:4-5. | 
																													
																							|  | WANG W. Research on identification of encrypted network application traffic[D]. Zhengzhou: Information Engineering University, 2014:4-5. | 
																													
																							| 4 | WRIGHT C V, COULL S E, MONROSE F. Traffic morphing: an efficient defense against statistical traffic analysis[C/OL]// Proceedings of the 16th Annual Network and Distributed System Security Symposium [2022-01-19].. | 
																													
																							| 5 | 于强,霍红卫. 一组提高存储效率的深度包检测算法[J]. 软件学报, 2011, 22(1):149-163.  10.3724/sp.j.1001.2011.03724 | 
																													
																							|  | YU Q, HUO H W. Algorithms improving the storage efficiency of deep packet inspection[J] Journal of Software, 2011, 22(1): 149-163.  10.3724/sp.j.1001.2011.03724 | 
																													
																							| 6 | WANG W, ZHU M, WANG J L, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]// Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics. Piscataway: IEEE, 2017: 43-48.  10.1109/isi.2017.8004872 | 
																													
																							| 7 | 陈雪娇,王攀,俞家辉. 基于卷积神经网络的加密流量识别方法[J]. 南京邮电大学学报(自然科学版), 2018, 38(6):36-41.  10.14132/j.cnki.1673-5439.2018.06.006 | 
																													
																							|  | CHEN X J, WANG P, YU J H. Encrypted traffic identification method based on convolutional neural network[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2018, 38(6): 36-41.  10.14132/j.cnki.1673-5439.2018.06.006 | 
																													
																							| 8 | LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A, et al. Network traffic classifier with convolutional and recurrent neural networks for Internet of Things[J]. IEEE Access, 2017, 5:18042-18050.  10.1109/access.2017.2747560 | 
																													
																							| 9 | LIU C, HE L T, XIONG G, et al. FS-Net: a flow sequence network for encrypted traffic classification[C]// Proceedings of the 2019 IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 1171-1179.  10.1109/infocom.2019.8737507 | 
																													
																							| 10 | LOTFOLLAHI M, JAFARI SIAVOSHANI M, SHIRALI HOSSEIN ZADE R, et al. Deep packet: a novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020, 24(3): 1999-2012.  10.1007/s00500-019-04030-2 | 
																													
																							| 11 | QIN T, WANG L, LIU Z L, et al. Robust application identification methods for P2P and VoIP traffic classification in backbone networks[J]. Knowledge-Based Systems, 2015, 82: 152-162.  10.1016/j.knosys.2015.03.002 | 
																													
																							| 12 | CHEN Z T, HE K, LI J, et al. Seq2Img: a sequence-to-image based approach towards IP traffic classification using convolutional neural networks[C]// Proceedings of the 2017 IEEE International Conference on Big Data. Piscataway: IEEE, 2017: 1271-1276.  10.1109/bigdata.2017.8258054 | 
																													
																							| 13 | SHAPIRA T, SHAVITT Y. FlowPic: encrypted internet traffic classification is as easy as image recognition[C]// Proceedings of the 2019 IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2019: 680-687.  10.1109/infcomw.2019.8845315 | 
																													
																							| 14 | PRIEBE C E, MARCHETTE D J, DeVINNEY J G, et al. Classification using class cover catch digraphs[J]. Journal of Classification, 2003, 20(1): 3-23.  10.1007/s00357-003-0003-7 | 
																													
																							| 15 | BIEN J, TIBSHIRANI B R. Prototype selection for interpretable classification[J]. The Annals of Applied Statistics, 2011, 5(4):2403-2424.  10.1214/11-aoas495 | 
																													
																							| 16 | WU C Y, TABAK E G. Prototypal analysis and prototypal regression[EB/OL]. (2017-08-23) [2022-01-20].. | 
																													
																							| 17 | LI O, LIU H, CHEN C F, et al. Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3530-3537.  10.1609/aaai.v32i1.11771 | 
																													
																							| 18 | CHEN C F, LI O, TAO C F, et al. This looks like that: deep learning for interpretable image recognition[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems. [2022-01-23].. | 
																													
																							| 19 | HASE P, CHEN C, LI O, et al. Interpretable image recognition with hierarchical prototypes[C]// Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 32-40.  10.1609/hcomp.v7i1.5265 | 
																													
																							| 20 | KIM E, KIM S, SEO M, et al. XProtoNet: diagnosis in chest radiography with global and local explanations[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15714-15723.  10.1109/cvpr46437.2021.01546 | 
																													
																							| 21 | ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2921-2929.  10.1109/cvpr.2016.319 | 
																													
																							| 22 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359.  10.1007/s11263-019-01228-7 | 
																													
																							| 23 | CHATTOPADHYAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks[C]// Proceedings of the 2018 Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 839-847.  10.1109/wacv.2018.00097 | 
																													
																							| 24 | OMEIZA D, SPEAKMAN S, CINTAS C, et al. Smooth Grad-CAM++: an enhanced inference level visualization technique for deep convolutional neural network models[EB/OL]. (2019-08-03) [2022-01-20]. .  10.48550/arXiv.1908.01224 | 
																													
																							| 25 | WANG H F, WANG Z F, DU M N, et al. Score-CAM: score-weighted visual explanations for convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 111-119.  10.1109/cvprw50498.2020.00020 | 
																													
																							| 26 | RUBNER Y, TOMASI C, GUIBAS L J. The earth mover’s distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2):99-121. | 
																													
																							| 27 | ZHAO W L, RAO Y M, WANG Z Y, et al. Towards interpretable deep metric learning with structural matching[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9867-9876.  10.1109/iccv48922.2021.00974 | 
																													
																							| 28 | ZHANG C, CAI Y J, LIN G S, et al. DeepEMD: few-shot image classification with differentiable earth mover’s distance and structured classifiers[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12200-12210.  10.1109/cvpr42600.2020.01222 | 
																													
																							| 29 | DRAPER-GIL G, LASHKARI A H, MAMUN M S I, et al. Characterization of encrypted and VPN traffic using time-related features[C]// Proceedings of the 2nd International Conference on Information Systems Security and Privacy. Setúbal: SciTePress, 2016:407-414.  10.5220/0005740704070414 | 
																													
																							| 30 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:2999-3007.  10.1109/iccv.2017.324 |