Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (7): 2173-2181.DOI: 10.11772/j.issn.1001-9081.2022060810
• Artificial intelligence • Previous Articles Next Articles
					
						                                                                                                                                                                                                                    Zhongyu LI1, Haodong SUN1, Jiao LI1,2,3( )
)
												  
						
						
						
					
				
Received:2022-06-06
															
							
																	Revised:2022-09-07
															
							
																	Accepted:2022-09-09
															
							
							
																	Online:2023-07-20
															
							
																	Published:2023-07-10
															
							
						Contact:
								Jiao LI   
													About author:LI Zhongyu, born in 1997, M. S. candidate. His research interests include object detection.Supported by:通讯作者:
					李娇
							作者简介:李忠雨(1997—),男,重庆人,硕士研究生,主要研究方向:目标检测;基金资助:CLC Number:
Zhongyu LI, Haodong SUN, Jiao LI. Lightweight gesture recognition algorithm for basketball referee[J]. Journal of Computer Applications, 2023, 43(7): 2173-2181.
李忠雨, 孙浩东, 李娇. 轻量化篮球裁判手势识别算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2173-2181.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022060810
| Involution引入模块 | 计算量/GFLOPs | mAP@0.5/% | 
|---|---|---|
| CSP1_1 | 5.3 | 90.6 | 
| CSP1_2 | 6.9 | 89.8 | 
| CSP1_3 | 16.7 | 89.1 | 
| CSP1_1、CSP1_2 | 3.0 | 86.4 | 
| CSP1_1、CSP1_2、CSP1_3 | 3.0 | 85.2 | 
Tab. 1 Conparison experiment of introducing Involution operator into CSP
| Involution引入模块 | 计算量/GFLOPs | mAP@0.5/% | 
|---|---|---|
| CSP1_1 | 5.3 | 90.6 | 
| CSP1_2 | 6.9 | 89.8 | 
| CSP1_3 | 16.7 | 89.1 | 
| CSP1_1、CSP1_2 | 3.0 | 86.4 | 
| CSP1_1、CSP1_2、CSP1_3 | 3.0 | 85.2 | 
| 算法 | 参数量/106 | 计算量/GFLOPs | 模型大小/MB | mAP@0.5/% | 精确率/% | 召回率/% | 帧率/(frame·s-1) | 
|---|---|---|---|---|---|---|---|
| YOLOV5s | 7.1 | 16.0 | 14.1 | 93.5 | 94.6 | 88.5 | 103.1 | 
| YOLOV5s-ghost | 3.7 | 8.3 | 7.8 | 92.2 | 95.5 | 86.9 | 94.3 | 
| YOLOV5s + Involution | 7.1 | 5.3 | 14.3 | 90.6 | 92.1 | 86.1 | 120.5 | 
| YOLOV5s + CA | 7.1 | 16.1 | 14.2 | 94.0 | 92.9 | 88.9 | 84.0 | 
| YOLOV5s + Content-aware | 7.2 | 16.5 | 14.4 | 93.7 | 94.4 | 87.8 | 94.3 | 
| YOLOV5s-ghost + CA+ Involution + Content-aware | 4.0 | 3.3 | 8.5 | 91.7 | 96.8 | 89.2 | 89.3 | 
Tab. 2 Comparison of performance of YOLOV5s before and after improvement
| 算法 | 参数量/106 | 计算量/GFLOPs | 模型大小/MB | mAP@0.5/% | 精确率/% | 召回率/% | 帧率/(frame·s-1) | 
|---|---|---|---|---|---|---|---|
| YOLOV5s | 7.1 | 16.0 | 14.1 | 93.5 | 94.6 | 88.5 | 103.1 | 
| YOLOV5s-ghost | 3.7 | 8.3 | 7.8 | 92.2 | 95.5 | 86.9 | 94.3 | 
| YOLOV5s + Involution | 7.1 | 5.3 | 14.3 | 90.6 | 92.1 | 86.1 | 120.5 | 
| YOLOV5s + CA | 7.1 | 16.1 | 14.2 | 94.0 | 92.9 | 88.9 | 84.0 | 
| YOLOV5s + Content-aware | 7.2 | 16.5 | 14.4 | 93.7 | 94.4 | 87.8 | 94.3 | 
| YOLOV5s-ghost + CA+ Involution + Content-aware | 4.0 | 3.3 | 8.5 | 91.7 | 96.8 | 89.2 | 89.3 | 
| 算法 | 手势类型 | mAP@0.5 | 
|---|---|---|
| YOLOV5s | 犯规停止计时钟 | 84.3 | 
| 进攻犯规 | 79.8 | |
| YOLOV5s-Involution | 犯规停止计时钟 | 77.6 | 
| 进攻犯规 | 73.2 | |
| YOLOV5s-ghost+ CA+Involution+ Content-aware | 犯规停止计时钟 | 79.8 | 
| 进攻犯规 | 78.1 | 
Tab. 3 Comparison of mAP@0.5 values between stop the clock for foul gesture and offensive foul gesture in three algorithms
| 算法 | 手势类型 | mAP@0.5 | 
|---|---|---|
| YOLOV5s | 犯规停止计时钟 | 84.3 | 
| 进攻犯规 | 79.8 | |
| YOLOV5s-Involution | 犯规停止计时钟 | 77.6 | 
| 进攻犯规 | 73.2 | |
| YOLOV5s-ghost+ CA+Involution+ Content-aware | 犯规停止计时钟 | 79.8 | 
| 进攻犯规 | 78.1 | 
| 算法 | mAP@0.5 | 精确率 | 召回率 | 
|---|---|---|---|
| YOLOV5s | 97.2 | 96.3 | 89.6 | 
| 本文算法 | 95.2 | 96.8 | 89.3 | 
Tab. 4 Comparison of detection results between YOLOV5s algorithm and the proposed algorithm on 2013 Chalearn gesture dataset
| 算法 | mAP@0.5 | 精确率 | 召回率 | 
|---|---|---|---|
| YOLOV5s | 97.2 | 96.3 | 89.6 | 
| 本文算法 | 95.2 | 96.8 | 89.3 | 
| 算法 | 模型大小/MB | 计算量/GFLOPs | mAP@0.5/% | 帧率/(frame·s-1) | 
|---|---|---|---|---|
| Faster RCNN | 460.4 | 283.2 | 82.6 | 34.5 | 
| YOLOV3 | 235.6 | 154.9 | 81.3 | 66.7 | 
| YOLOV4 | 245.8 | 142.0 | 85.4 | 82.4 | 
| YOLOV3-Tiny | 34.0 | 5.6 | 71.3 | 76.9 | 
| YOLOV4-Tiny | 23.5 | 6.9 | 78.8 | 83.3 | 
| YOLOX-Tiny | 5.1 | 6.45 | 86.3 | 86.9 | 
| YOLOV5s | 14.1 | 16.0 | 93.5 | 103.1 | 
| 本文算法 | 8.5 | 3.3 | 91.7 | 89.3 | 
Tab. 5 Comparison experiments between other object detection algorithms and the proposed algorithm
| 算法 | 模型大小/MB | 计算量/GFLOPs | mAP@0.5/% | 帧率/(frame·s-1) | 
|---|---|---|---|---|
| Faster RCNN | 460.4 | 283.2 | 82.6 | 34.5 | 
| YOLOV3 | 235.6 | 154.9 | 81.3 | 66.7 | 
| YOLOV4 | 245.8 | 142.0 | 85.4 | 82.4 | 
| YOLOV3-Tiny | 34.0 | 5.6 | 71.3 | 76.9 | 
| YOLOV4-Tiny | 23.5 | 6.9 | 78.8 | 83.3 | 
| YOLOX-Tiny | 5.1 | 6.45 | 86.3 | 86.9 | 
| YOLOV5s | 14.1 | 16.0 | 93.5 | 103.1 | 
| 本文算法 | 8.5 | 3.3 | 91.7 | 89.3 | 
| 1 | 张亚吉.篮球比赛智能辅助裁判系统设计[J].冰雪体育创新研究, 2021(22): 169-170. | 
| ZHANG Y J. Design of intelligent assistant referee system for basketball match[J]. Research on Innovation of Ice Snow Sports, 2021(22): 169-170. | |
| 2 | 曾丽霞,蒋晓,戴传庆.可穿戴设备中手势交互的设计原则[J].包装工程, 2015, 36(20): 135-138, 155. | 
| ZENG L X, JIANG X, DAI C Q. Design principle of gesture interaction in the wearable device[J]. Packaging Engineering, 2015, 36(20): 135-138, 155. | |
| 3 | 关然,徐向民,罗雅愉,等.基于计算机视觉的手势检测识别技术[J].计算机应用与软件, 2013, 30(1): 155-159, 164. 10.3969/j.issn.1000-386x.2013.01.038 | 
| GUAN R, XU X M, LUO Y Y, et al. A computer vision-based gesture detection and recognition technique[J]. Computer Applications and Software, 2013, 30(1): 155-159, 164. 10.3969/j.issn.1000-386x.2013.01.038 | |
| 4 | GUYON I, ATHITSOS V, JANGYODSUK P, et al. The ChaLearn gesture dataset (CGD 2011) [J]. Machine Vision and Applications, 2014, 25(8): 1929-1951. 10.1007/s00138-014-0596-3 | 
| 5 | PIGOU L, van HERREWEGHE M, DAMBRE J. Gesture and sign language recognition with temporal residual networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2017: 3086-3093. 10.1109/iccvw.2017.365 | 
| 6 | LI D X, CHEN Y M, GAO M K, et al. Multimodal gesture recognition using densely connected convolution and BLSTM [C]// Proceedings of the 24th International Conference on Pattern Recognition. Piscataway: IEEE, 2018: 3365-3370. 10.1109/icpr.2018.8545502 | 
| 7 | PAN T Y, TSAI W L, CHANG C Y, et al. A hierarchical hand gesture recognition framework for sports referee training-based EMG and accelerometer sensors[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 3172-3183. 10.1109/tcyb.2020.3007173 | 
| 8 | ŽEMGULYS J, RAUDONIS V, MASKELIŪNAS R, et al. Recognition of basketball referee signals from real-time videos[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(3): 979-991. 10.1007/s12652-019-01209-1 | 
| 9 | JI R. Research on basketball shooting action based on image feature extraction and machine learning[J]. IEEE Access, 2020, 8: 138743-138751. 10.1109/access.2020.3012456 | 
| 10 | NGUYEN N H, PHAN T D T, KIM S H, et al. 3D skeletal joints-based hand gesture spotting and classification[J]. Applied Sciences, 2021, 11(10): No.4689. 10.3390/app11104689 | 
| 11 | 郭紫嫣,韩慧妍,何黎刚,等.基于改进的YOLOV4的手势识别算法及其应用[J].中北大学学报(自然科学版), 2021, 42(3): 223-231. 10.3969/j.issn.1673-3193.2021.03.006 | 
| GUO Z Y, HAN H Y, HE L G, et al. Gesture recognition algorithm and application based on improved YOLOv4[J]. Journal of North University of China (Natural Science Edition), 2021, 42(3): 223-231. 10.3969/j.issn.1673-3193.2021.03.006 | |
| 12 | 解迎刚,王全.基于视觉的动态手势识别研究综述[J].计算机工程与应用, 2021, 57(22): 68-77. | 
| XIE Y G, WANG Q. Summary of dynamic gesture recognition based on vision[J]. Computer Engineering and Applications, 2021, 57(22): 68-77. | |
| 13 | 田秋红,杨慧敏,梁庆龙,等.视觉动态手势识别综述[J].浙江理工大学学报(自然科学版), 2020, 43(4): 557-569. | 
| TIAN Q H, YANG H M, LIANG Q L, et al. Overview on vision-based dynamic gesture recognition[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2020, 43(4): 557-569. | |
| 14 | 辛文斌,郝惠敏,卜明龙,等.基于ShuffleNetv2-YOLOV3模型的静态手势实时识别方法[J].浙江大学学报(工学版), 2021, 55(10): 1815-1824, 1846. | 
| XIN W B, HAO H M, BU M L, el at. Static gesture real-time recognition method based on ShuffleNetv2-YOLOV3 model[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(10): 1815-1824, 1846. | |
| 15 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 | 
| 16 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. 10.1109/cvpr.2017.690 | 
| 17 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-04-20]. . 10.1109/cvpr.2017.690 | 
| 18 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-04-20]. . | 
| 19 | LI D, HU J, WANG C H, et al. Involution: inverting the inherence of convolution for visual recognition [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12316-12325. 10.1109/cvpr46437.2021.01214 | 
| 20 | JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. 10.1109/tpami.2019.2913372 | 
| 21 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. | 
| 22 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. 10.1109/cvpr46437.2021.01350 | 
| 23 | WANG J Q, CHEN K, XU R, et al. CARAFE: Content-Aware ReAssembly of FEatures [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3007-3016. 10.1109/iccv.2019.00310 | 
| 24 | HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. 10.1109/cvpr42600.2020.00165 | 
| 25 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks [C]// Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2011: 315-323. | 
| 26 | ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11. 10.1016/j.neunet.2017.12.012 | 
| [1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. | 
| [2] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. | 
| [3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [4] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. | 
| [6] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. | 
| [7] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. | 
| [8] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. | 
| [9] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. | 
| [10] | Yingjun ZHANG, Niuniu LI, Binhong XIE, Rui ZHANG, Wangdong LU. Semi-supervised object detection framework guided by curriculum learning [J]. Journal of Computer Applications, 2024, 44(8): 2326-2333. | 
| [11] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [12] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [13] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. | 
| [14] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. | 
| [15] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||