Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (7): 2166-2172.DOI: 10.11772/j.issn.1001-9081.2022060933
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Chunlan ZHAN1, Anzhi WANG1(), Minghui WANG2
Received:
2022-06-28
Revised:
2022-08-30
Accepted:
2022-09-01
Online:
2022-09-13
Published:
2023-07-10
Contact:
Anzhi WANG
About author:
ZHAN Chunlan, born in 2000. Her research interests include camouflage object detection.Supported by:
通讯作者:
王安志
作者简介:
詹春兰(2000—),女,贵州毕节人,CCF会员,主要研究方向:伪装目标检测;基金资助:
CLC Number:
Chunlan ZHAN, Anzhi WANG, Minghui WANG. Camouflage object segmentation method based on channel attention and edge fusion[J]. Journal of Computer Applications, 2023, 43(7): 2166-2172.
詹春兰, 王安志, 王明辉. 基于通道注意力和边缘融合的伪装目标分割方法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2166-2172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022060933
方法 | 期刊/年份 | CHAMELEON | COD10K | ||||||
---|---|---|---|---|---|---|---|---|---|
NLDF | CVPR/17 | 0.798 | 0.714 | 0.809 | 0.063 | 0.701 | 0.539 | 0.709 | 0.059 |
PiCANet | CVPR/18 | 0.765 | 0.618 | 0.779 | 0.085 | 0.696 | 0.489 | 0.712 | 0.081 |
EGNet | ICCV/19 | 0.856 | 0.766 | 0.883 | 0.049 | 0.751 | 0.595 | 0.793 | 0.053 |
CPD | CVPR/19 | 0.857 | 0.771 | 0.857 | 0.048 | 0.750 | 0.595 | 0.776 | 0.053 |
F3Net | AAAI/20 | 0.848 | 0.770 | 0.894 | 0.047 | 0.739 | 0.593 | 0.795 | 0.051 |
SINet | CVPR/20 | 0.872 | 0.776 | 0.679 | |||||
TINet | AAAI/21 | 0.783 | 0.916 | 0.038 | 0.635 | 0.848 | |||
C2FNet | IJCAI/21 | 0.854 | 0.785 | 0.906 | 0.045 | 0.788 | 0.862 | 0.045 | |
本文方法 | — | 0.898 | 0.854 | 0.939 | 0.027 | 0.802 | 0.710 | 0.868 | 0.038 |
Tab. 1 Quantitative index comparison of the proposed method and mainstream methods
方法 | 期刊/年份 | CHAMELEON | COD10K | ||||||
---|---|---|---|---|---|---|---|---|---|
NLDF | CVPR/17 | 0.798 | 0.714 | 0.809 | 0.063 | 0.701 | 0.539 | 0.709 | 0.059 |
PiCANet | CVPR/18 | 0.765 | 0.618 | 0.779 | 0.085 | 0.696 | 0.489 | 0.712 | 0.081 |
EGNet | ICCV/19 | 0.856 | 0.766 | 0.883 | 0.049 | 0.751 | 0.595 | 0.793 | 0.053 |
CPD | CVPR/19 | 0.857 | 0.771 | 0.857 | 0.048 | 0.750 | 0.595 | 0.776 | 0.053 |
F3Net | AAAI/20 | 0.848 | 0.770 | 0.894 | 0.047 | 0.739 | 0.593 | 0.795 | 0.051 |
SINet | CVPR/20 | 0.872 | 0.776 | 0.679 | |||||
TINet | AAAI/21 | 0.783 | 0.916 | 0.038 | 0.635 | 0.848 | |||
C2FNet | IJCAI/21 | 0.854 | 0.785 | 0.906 | 0.045 | 0.788 | 0.862 | 0.045 | |
本文方法 | — | 0.898 | 0.854 | 0.939 | 0.027 | 0.802 | 0.710 | 0.868 | 0.038 |
方法 | CHAMELEON | COD10K | ||||||
---|---|---|---|---|---|---|---|---|
Basic | 0.856 | 0.795 | 0.908 | 0.044 | 0.767 | 0.648 | 0.843 | 0.047 |
Basic+SE | 0.872 | 0.822 | 0.920 | 0.038 | 0.791 | 0.690 | 0.858 | 0.044 |
Basic+DSCA | 0.876 | 0.826 | 0.917 | 0.035 | 0.788 | 0.698 | 0.856 | 0.040 |
Basic+EFCBP | 0.880 | 0.826 | 0.928 | 0.034 | 0.786 | 0.690 | 0.855 | 0.042 |
CANet | 0.898 | 0.854 | 0.939 | 0.027 | 0.802 | 0.710 | 0.868 | 0.038 |
Tab. 2 Ablation experimental results of SE, DSCA and EFCBP modules on CHAMELEON and COD10K datasets
方法 | CHAMELEON | COD10K | ||||||
---|---|---|---|---|---|---|---|---|
Basic | 0.856 | 0.795 | 0.908 | 0.044 | 0.767 | 0.648 | 0.843 | 0.047 |
Basic+SE | 0.872 | 0.822 | 0.920 | 0.038 | 0.791 | 0.690 | 0.858 | 0.044 |
Basic+DSCA | 0.876 | 0.826 | 0.917 | 0.035 | 0.788 | 0.698 | 0.856 | 0.040 |
Basic+EFCBP | 0.880 | 0.826 | 0.928 | 0.034 | 0.786 | 0.690 | 0.855 | 0.042 |
CANet | 0.898 | 0.854 | 0.939 | 0.027 | 0.802 | 0.710 | 0.868 | 0.038 |
1 | SUN Y J, CHEN G, ZHOU T, et al. Context-aware cross-level fusion network for camouflaged object detection [C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 1025-1031. 10.24963/ijcai.2021/142 |
2 | 谭湘粤,胡晓,杨佳信,等.基于递进式特征增强聚合的伪装目标检测[J].计算机应用, 2022, 42(7): 2192-2200. 10.11772/j.issn.1001-9081.2021060900 |
TAN X Y, HU X, YANG J X, et al. Camouflaged object detection based on progressive feature enhancement aggregation[J]. Journal of Computer Applications, 2022, 42(7): 2192-2200. 10.11772/j.issn.1001-9081.2021060900 | |
3 | 何淋艳,王安志,任春洪,等.伪装目标检测与分割研究进展[J].软件导刊, 2022, 21(3): 237-243. |
HE L Y, WANG A Z, REN C H, et al. Research advances in camouflage object detection and segmentation[J]. Software Guide, 2022, 21(3): 237-243. | |
4 | MEI H Y, JI G P, WEI Z Q, et al. Camouflaged object segmentation with distraction mining [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8768-8777. 10.1109/cvpr46437.2021.00866 |
5 | 王安志,任春洪,何淋艳,等.基于多模态多级特征聚合网络的光场显著性目标检测[J].计算机工程, 2022, 48(7): 227-233, 240. |
WANG A Z, REN C H, HE L Y, et al. Light field salient object detection based on multi-modal multi-level feature aggregation network[J]. Computer Engineering, 2022, 48(7): 227-233, 240. | |
6 | 李小雨,房体育,夏英杰,等.基于图割精细化和可微分聚类的无监督显著性目标检测[J].计算机应用, 2021, 41(12): 3571-3577. 10.11772/j.issn.1001-9081.2021061054 |
LI X Y, FANG T Y, XIA Y J, et al. Unsupervised salient object detection based on graph cut refinement and differentiable clustering[J]. Journal of Computer Applications, 2021, 41(12): 3571-3577. 10.11772/j.issn.1001-9081.2021061054 | |
7 | WU R M, FENG M Y, GUAN W L, et al. A mutual learning method for salient object detection with intertwined multi-supervision [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8142-8151. 10.1109/cvpr.2019.00834 |
8 | QIN X B, ZHANG Z C, HUANG C Y, et al. BASNet: boundary-aware salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7471-7481. 10.1109/cvpr.2019.00766 |
9 | FENG M Y, LU H C, DING E R. Attentive feedback network for boundary-aware salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1623-1632. 10.1109/cvpr.2019.00172 |
10 | JI G P, ZHU L, ZHUGE M C, et al. Fast camouflaged object detection via edge-based reversible re-calibration network[J]. Pattern Recognition, 2022, 123: No.108414. 10.1016/j.patcog.2021.108414 |
11 | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. 10.1109/cvpr.2017.660 |
12 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. 10.1109/tpami.2017.2699184 |
13 | RAMACHANDRAN P, PARMAR N, VASWANI A, et al. Stand-alone self-attention in vision models [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 68-80. |
14 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
15 | GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. 10.1109/tpami.2019.2938758 |
16 | LE T N, NGUYEN T V, NIE Z L, et al. Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184: 45-56. 10.1016/j.cviu.2019.04.006 |
17 | SKUROWSKI P, ABDULAMEER H, BŁASZCZYK J, et al. Animal camouflage analysis: CHAMELEON database[DB/OL]. [2022-06-20]. . |
18 | FAN D P, JI G P, SUN G L, et al. Camouflaged object detection [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2774-2784. 10.1109/cvpr42600.2020.00285 |
19 | LV Y Q, ZHANG J, DAI Y C, et al. Simultaneously localize, segment and rank the camouflaged objects [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11586-11596. 10.1109/cvpr46437.2021.01142 |
20 | FAN D P, CHENG M M, LIU Y, et al. Structure measure: a new way to evaluate foreground maps [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4558-4567. 10.1109/iccv.2017.487 |
21 | FAN D P, GONG C, CAO Y, et al. Enhanced-alignment measure for binary foreground map evaluation [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 698-704. 10.24963/ijcai.2018/97 |
22 | LOU Z M, MISHRA A, ACHKAR A, et al. Non-local deep features for salient object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6593-6601. 10.1109/cvpr.2017.698 |
23 | LIU N, HAN J W, YANG M H. PiCANet: learning pixel-wise contextual attention for saliency detection [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3089-3098. 10.1109/cvpr.2018.00326 |
24 | ZHAO J X, LIU J J, FAN D P, et al. EGNet: edge guidance network for salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8778-8787. 10.1109/iccv.2019.00887 |
25 | WU Z, SU L, HUANG Q M. Cascaded partial decoder for fast and accurate salient object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3902-3911. 10.1109/cvpr.2019.00403 |
26 | WEI J, WANG S H, HUANG Q M. F3Net: fusion, feedback and focus for salient object detection [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 12321-12328. 10.1609/aaai.v34i07.6916 |
27 | ZHU J C, ZHANG X Y, ZHANG S, et al. Inferring camouflaged objects by texture-aware interactive guidance network [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 3599-3607. 10.1609/aaai.v35i4.16475 |
[1] | Yan RONG, Jiawen LIU, Xinlei LI. Adaptive hybrid network for affective computing in student classroom [J]. Journal of Computer Applications, 2024, 44(9): 2919-2930. |
[2] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[3] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[4] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. |
[5] | Hao YANG, Yi ZHANG. Feature pyramid network algorithm based on context information and multi-scale fusion importance awareness [J]. Journal of Computer Applications, 2023, 43(9): 2727-2734. |
[6] | Hong WANG, Qing QIAN, Huan WANG, Yong LONG. Lightweight image tamper localization algorithm based on large kernel attention convolution [J]. Journal of Computer Applications, 2023, 43(9): 2692-2699. |
[7] | Junjian JIANG, Dawei LIU, Yifan LIU, Yougui REN, Zhibin ZHAO. Few-shot object detection algorithm based on Siamese network [J]. Journal of Computer Applications, 2023, 43(8): 2325-2329. |
[8] | Shuai ZHENG, Xiaolong ZHANG, He DENG, Hongwei REN. 3D liver image segmentation method based on multi-scale feature fusion and grid attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2303-2310. |
[9] | Yiyu GUO, Luoyu ZHOU, Xinyu LIU, Yao LI. Dangerous goods detection method in elevator scene based on improved attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2295-2302. |
[10] | Ruilin JIANG, Renchao QIN. Multi-neural network malicious code detection model based on depthwise separable convolution [J]. Journal of Computer Applications, 2023, 43(5): 1527-1533. |
[11] | Hui LIU, Linyu ZHANG, Fugang WANG, Rujin HE. Object detection algorithm based on attention mechanism and context information [J]. Journal of Computer Applications, 2023, 43(5): 1557-1564. |
[12] | Zhouhua ZHU, Qi QI. Automatic detection and recognition of electric vehicle helmet based on improved YOLOv5s [J]. Journal of Computer Applications, 2023, 43(4): 1291-1296. |
[13] | You YANG, Ruhui ZHANG, Pengcheng XU, Kang KANG, Hao ZHAI. Improved U-Net for seal segmentation of Republican archives [J]. Journal of Computer Applications, 2023, 43(3): 943-948. |
[14] | Xin ZHAO, Qianqian ZHU, Cong ZHAO, Jialing WU. Segmentation of breast nodules in ultrasound images based on multi-scale and cross-spatial fusion [J]. Journal of Computer Applications, 2023, 43(11): 3599-3606. |
[15] | LYU Yuchao, JIANG Xi, XU Yinghao, ZHU Xijun. Improved brachial plexus nerve segmentation method based on multi-scale feature fusion [J]. Journal of Computer Applications, 2023, 43(1): 273-279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||