| 1 | 
																						 
											WOLPERT E A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects [J]. Archives of General Psychiatry, 1969, 20(2): 246-247.  10.1001/archpsyc.1969.01740140118016 
																						 | 
										
																													
																							| 2 | 
																						 
											BERRY R B, BROOKS R, GAMALDO C E, et al.  The AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications version 2.2 [S/OL]. (2015)[2023-05-01]. .  10.5664/jcsm.5176 
																						 | 
										
																													
																							| 3 | 
																						 
											BANLUESOMBATKUL N, OUPPAPHAN P, LEELAARPORN P, et al. MetaSleepLearner: a pilot study on fast adaptation of bio-signals-based sleep stage classifier to new individual subject using meta-learning[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(6): 1949-1963.  10.1109/jbhi.2020.3037693 
																						 | 
										
																													
																							| 4 | 
																						 
											KOLEY B, DEY D. An ensemble system for automatic sleep stage classification using single channel EEG signal[J]. Computers in Biology and Medicine, 2012, 42(12): 1186-1195.  10.1016/j.compbiomed.2012.09.012 
																						 | 
										
																													
																							| 5 | 
																						 
											ANDREOTTI F, PHAN H, COORAY N, et al. Multichannel sleep stage classification and transfer learning using convolutional neural networks[C]// Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2018: 171-174.  10.1109/embc.2018.8512214 
																						 | 
										
																													
																							| 6 | 
																						 
											SUPRATAK A, DONG H, WU C, et al. DeepSleepNet: a model for automatic sleep stage scoring based on raw single-channel EEG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11): 1998-2008.  10.1109/tnsre.2017.2721116 
																						 | 
										
																													
																							| 7 | 
																						 
											PERSLEV M, DARKNER S, KEMPFNER L, et al. U-Sleep: resilient high-frequency sleep staging[J]. npj Digital Medicine, 2021, 4: No.72.  10.1038/s41746-021-00440-5 
																						 | 
										
																													
																							| 8 | 
																						 
											金欢欢, 尹海波, 何玲娜. 基于生成少数类技术的深度自动睡眠分期模型[J]. 计算机应用, 2018, 38(9): 2483-2488.  10.11772/j.issn.1001-9081.2018020440 
																						 | 
										
																													
																							 | 
																						 
											JIN H H, YIN H B, HE L N. Deep automatic sleep staging model using synthetic minority technique[J]. Journal of Computer Applications, 2018, 38(9): 2483-2488.  10.11772/j.issn.1001-9081.2018020440 
																						 | 
										
																													
																							| 9 | 
																						 
											BOOSTANI R, KARIMZADEH F, NAMI M. A comparative review on sleep stage classification methods in patients and healthy individuals[J]. Computer Methods and Programs in Biomedicine, 2017, 140: 77-91.  10.1016/j.cmpb.2016.12.004 
																						 | 
										
																													
																							| 10 | 
																						 
											ANDREOTTI F, PHAN H, COORAY N, et al. Multichannel sleep stage classification and transfer learning using convolutional neural networks[C]// Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2018: 171-174.  10.1109/embc.2018.8512214 
																						 | 
										
																													
																							| 11 | 
																						 
											RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.  10.1007/978-3-319-24574-4_28 
																						 | 
										
																													
																							| 12 | 
																						 
											WANG J X. Meta-learning in natural and artificial intelligence[J]. Current Opinion in Behavioral Sciences, 2021, 38: 90-95.  10.1016/j.cobeha.2021.01.002 
																						 | 
										
																													
																							| 13 | 
																						 
											FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR, 2017: 1126-1135.  10.1109/icra.2016.7487173 
																						 | 
										
																													
																							| 14 | 
																						 
											VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3637-3645.
																						 | 
										
																													
																							| 15 | 
																						 
											SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 4080-4090.
																						 | 
										
																													
																							| 16 | 
																						 
											SUN Q, LIU Y, CHEN Z, et al. Meta-transfer learning through hard tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(3): 1443-1456.  10.1109/tpami.2020.3018506 
																						 | 
										
																													
																							| 17 | 
																						 
											FRENCH R M. Catastrophic forgetting in connectionist networks[J]. Trends in Cognitive Sciences, 1999, 3(4): 128-135.  10.1016/s1364-6613(99)01294-2 
																						 | 
										
																													
																							| 18 | 
																						 
											KHALIGHI S, SOUSA T, SANTOS J M, et al. ISRUC-Sleep: a comprehensive public dataset for sleep researchers[J]. Computer Methods and Programs in Biomedicine, 2016, 124: 180-192.  10.1016/j.cmpb.2015.10.013 
																						 | 
										
																													
																							| 19 | 
																						 
											GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220.  10.1161/01.cir.101.23.e215 
																						 | 
										
																													
																							| 20 | 
																						 
											KEMP B, ZWINDERMAN A H, TUK B, et al. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(9): 1185-1194.  10.1109/10.867928 
																						 | 
										
																													
																							| 21 | 
																						 
											GOUTTE C, GAUSSIER E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation[C]// Proceedings of the 2005 27th European Conference on IR Research. Cham: Springer, 2005: 345-359.  10.1007/978-3-540-31865-1_25 
																						 | 
										
																													
																							| 22 | 
																						 
											BRENNAN R L, PREDIGER D J. Coefficient kappa: some uses, misuses, and alternatives[J]. Educational and Psychological Measurement, 1981, 41: 687-699.  10.1177/001316448104100307 
																						 |