Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3379-3385.DOI: 10.11772/j.issn.1001-9081.2023101516
• Artificial intelligence • Previous Articles Next Articles
Xinyue YAN, Shuqun YANG, Yongbin GAO()
Received:
2023-11-06
Revised:
2024-01-31
Accepted:
2024-02-04
Online:
2024-11-13
Published:
2024-11-10
Contact:
Yongbin GAO
About author:
YAN Xinyue, born in 2000, M. S. candidate. Her research interests include natural language processing.通讯作者:
高永彬
作者简介:
颜新月(2000—),女,山东临沂人,硕士研究生,主要研究方向:自然语言处理基金资助:
CLC Number:
Xinyue YAN, Shuqun YANG, Yongbin GAO. Document-level relationship extraction based on evidence enhancement and multi-feature fusion[J]. Journal of Computer Applications, 2024, 44(11): 3379-3385.
颜新月, 杨淑群, 高永彬. 基于证据增强与多特征融合的文档级关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3379-3385.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101516
模型 | PLM | 开发集 | 测试集 | |||
---|---|---|---|---|---|---|
Ign F1 | F1 | Evi F1 | Ign F1 | F1 | ||
LSR | BERTbase | 52.43 | 59.00 | — | 56.97 | 59.05 |
GAIN | 59.14 | 61.22 | — | 59.00 | 61.24 | |
BERT | — | 54.16 | — | — | 53.20 | |
SSAN | 57.03 | 59.19 | — | 55.84 | 58.16 | |
ATLOP | 59.22 | 61.09 | — | 59.31 | 61.30 | |
E2GRE | 55.22 | 58.79 | 47.12 | — | — | |
DocuNet | 59.86 | 61.83 | — | 59.93 | 61.86 | |
ERA | 59.72 | 61.80 | 59.08 | 61.36 | ||
EIDER | 60.51 | 62.48 | 51.27 | 60.96 | 62.77 | |
EMF | 60.93 | 62.89 | 52.35 | 61.10 | 62.88 | |
Core | RoBERTalarge | 57.35 | 59.43 | — | 57.90 | 60.25 |
SSAN | 60.25 | 62.08 | — | 59.47 | 61.42 | |
ATLOP | 61.32 | 63.18 | — | 61.39 | 63.40 | |
EMF | 62.30 | 64.20 | 54.12 | 62.12 | 64.42 |
Tab. 1 Comparison of results of different models on DocRED dataset
模型 | PLM | 开发集 | 测试集 | |||
---|---|---|---|---|---|---|
Ign F1 | F1 | Evi F1 | Ign F1 | F1 | ||
LSR | BERTbase | 52.43 | 59.00 | — | 56.97 | 59.05 |
GAIN | 59.14 | 61.22 | — | 59.00 | 61.24 | |
BERT | — | 54.16 | — | — | 53.20 | |
SSAN | 57.03 | 59.19 | — | 55.84 | 58.16 | |
ATLOP | 59.22 | 61.09 | — | 59.31 | 61.30 | |
E2GRE | 55.22 | 58.79 | 47.12 | — | — | |
DocuNet | 59.86 | 61.83 | — | 59.93 | 61.86 | |
ERA | 59.72 | 61.80 | 59.08 | 61.36 | ||
EIDER | 60.51 | 62.48 | 51.27 | 60.96 | 62.77 | |
EMF | 60.93 | 62.89 | 52.35 | 61.10 | 62.88 | |
Core | RoBERTalarge | 57.35 | 59.43 | — | 57.90 | 60.25 |
SSAN | 60.25 | 62.08 | — | 59.47 | 61.42 | |
ATLOP | 61.32 | 63.18 | — | 61.39 | 63.40 | |
EMF | 62.30 | 64.20 | 54.12 | 62.12 | 64.42 |
模型 | F1 | |
---|---|---|
CDR | GDA | |
BRAN | 62.1 | — |
EGO | 63.6 | 81.5 |
LSR | 64.8 | 82.2 |
ATLOP-SciBERT | 69.4 | 83.9 |
EMF-SciBERT | 75.8 | 84.9 |
Tab. 2 Comparison of F1 on CDR and GDA
模型 | F1 | |
---|---|---|
CDR | GDA | |
BRAN | 62.1 | — |
EGO | 63.6 | 81.5 |
LSR | 64.8 | 82.2 |
ATLOP-SciBERT | 69.4 | 83.9 |
EMF-SciBERT | 75.8 | 84.9 |
模型 | Ign F1 | F1 | Evi F1 |
---|---|---|---|
EMF | 60.93 | 62.89 | 52.35 |
-evidence | 59.60 | 61.82 | 42.79 |
-relation | 58.72 | 61.40 | 42.73 |
-n-gram | 58.05 | 61.08 | 42.75 |
-cls | 57.55 | 60.22 | 42.80 |
Tab. 3 Ablation experimental results
模型 | Ign F1 | F1 | Evi F1 |
---|---|---|---|
EMF | 60.93 | 62.89 | 52.35 |
-evidence | 59.60 | 61.82 | 42.79 |
-relation | 58.72 | 61.40 | 42.73 |
-n-gram | 58.05 | 61.08 | 42.75 |
-cls | 57.55 | 60.22 | 42.80 |
1 | PENG N, POON H, QUIRK C, et al. Cross-sentence n-ary relation extraction with graph LSTMs[J]. Transactions of the Association for Computational Linguistics, 2017, 5: 101-115. |
2 | VERGA P, STRUBELL E, McCALLUM A. Simultaneously self-attending to all mentions for full-abstract biological relation extraction[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg, PA: ACL, 2018:872-884. |
3 | YAO Y, YE D, LI P, et al. DocRED: a large-scale document-level relation extraction dataset[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019:764-777. |
4 | YE D, LIN Y, DU J, et al. Coreferential reasoning learning for language representation[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 7170- 7186. |
5 | XU B, WANG Q, LYU Y, et al. Entity structure within and throughout: modeling mention dependencies for document-level relation extraction[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 14149-14157. |
6 | LI J, XU K, LI F, et al. MRN: a locally and globally mention-based reasoning network for document-level relation extraction[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, PA: ACL, 2021: 1359-1370. |
7 | ZHOU W, HUANG K, MA T, et al. Document-level relation extraction with adaptive thresholding and localized context pooling[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 14612-14620. |
8 | CAI R, ZHANG X, WANG H. Bidirectional recurrent convolutional neural network for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2016: 756-765. |
9 | ZHANG N, DENG S, SUN Z, et al. Relation adversarial network for low resource knowledge graph completion[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 1-12. |
10 | QUIRK C, POON H. Distant supervision for relation extraction beyond the sentence boundary[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Stroudsburg, PA: ACL, 2017: 1171-1182. |
11 | ZENG S, XU R, CHANG B, et al. Double graph based reasoning for document-level relation extraction[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 1630-1640. |
12 | XU W, CHEN K, ZHAO T. Document-level relation extraction with reconstruction[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 14167-14175. |
13 | ZENG S, WU Y, CHANG B. SIRE: separate intra-and inter-sentential reasoning for document-level relation extraction[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, PA: ACL, 2021: 524-534. |
14 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. |
15 | ZHANG N, CHEN X, XIE X, et al. Document-level relation extraction as semantic segmentation[C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: IJCAI, 2021: 3999-4006. |
16 | 袁泉,徐雲鹏,唐成亮. 基于路径标签的文档级关系抽取方法[J]. 计算机应用, 2023, 43(4):1029-1035. |
YUAN Q, XU Y P, TANG C L. Document level-relationship extraction method based on path labels[J]. Journal of Computer Applications, 2023, 43(4): 1029-1035. | |
17 | HUANG K, QI P, WANG G, et al. Entity and evidence guided document-level relation extraction[C]// Proceedings of the 6th Workshop on Representation Learning for NLP. Stroudsburg, PA: ACL, 2021: 307-315. |
18 | HUANG Q, ZHU S, FENG Y, et al. Three sentences are all you need: local path enhanced document relation extraction[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Stroudsburg, PA: ACL, 2021: 998-1004. |
19 | TAN Q, HE R, BING L, et al. Document-level relation extraction with adaptive focal loss and knowledge distillation[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg, PA: ACL, 2022: 1672-1681. |
20 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 4171-4186. |
21 | XIE Y, SHEN J, LI S, et al. EIDER: empowering document-level relation extraction with efficient evidence extraction and inference-stage fusion[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg, PA: ACL, 2022: 257-268. |
22 | LI J, SUN Y, JOHNSON R J, et al. BioCreative V CDR task corpus: a resource for chemical disease relation extraction[J]. Database, 2016, 2016: No.baw068. |
23 | WU Y, LUO R, LEUNG H C M, et al. RENET: a deep learning approach for extracting gene-disease associations from literature[C]// Proceedings of the 2019 International Conference on Research in Computational Molecular Biology, LNCS 11467. Cham: Springer, 2019: 272-284. |
24 | WOLF T, DEBUT L, SANH V, et al. Transformers: state-of-the-art natural language processing[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg, PA: ACL, 2020: 38-45. |
25 | LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. [2023-07-09].. |
26 | NAN G, GUO Z, SEKULIĆ I, et al. Reasoning with latent structure refinement for document-level relation extraction[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2020: 1546-1557. |
27 | DU Y, MA T, WU L, et al. Improving long tailed document-level relation extraction via easy relation augmentation and contrastive learning[EB/OL]. [2023-08-12].. |
28 | CHRISTOPOULOU F, MIWA M, ANANIADOU S. Connecting the dots:document-level neural relation extraction with edge-oriented graphs[C]// Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 4925-4936. |
29 | BELTAGY I, LO K, COHAN A. SciBERT: a pretrained language model for scientific text[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 3615-3620. |
TFoundation:his work is partially supported by Shanghai Local Capacity Building Project (21010501500); Shanghai “Science and Technology Innovation Action Plan” Social Development Science and Technology Research Project (21DZ1204900). |
[1] | Zucheng WU, Xiaojun WU, Tianyang XU. Image-text retrieval model based on intra-modal fine-grained feature relationship extraction [J]. Journal of Computer Applications, 2024, 44(12): 3776-3783. |
[2] | Jinke DENG, Wenjie DUAN, Shunxiang ZHANG, Yuqing WANG, Shuyu LI, Jiawei LI. Complex causal relationship extraction based on prompt enhancement and bi-graph attention network [J]. Journal of Computer Applications, 2024, 44(10): 3081-3089. |
[3] | Kuo TIAN, Yinghan WU, Feng HU. Identification method of influence nodes in multilayer hypernetwork based on evidence theory [J]. Journal of Computer Applications, 2024, 44(1): 182-189. |
[4] | Sirui WANG, Shijuan CHENG, Feimeng YUAN. Reliability evaluation method of high-reliability products based on improved evidence fusion [J]. Journal of Computer Applications, 2023, 43(7): 2140-2146. |
[5] | Yu WANG, Zilin FAN, Tianjun REN, Xiaofei JI. Aerial target identification method based on switching reasoning evidential network under incomplete information [J]. Journal of Computer Applications, 2023, 43(4): 1071-1078. |
[6] | YANG Lei, ZHAO Hongdong. Environment sound recognition based on lightweight deep neural network [J]. Journal of Computer Applications, 2020, 40(11): 3172-3177. |
[7] | LI Xufeng, SONG Yafei, LI Xiaonan. Temporal evidence fusion method with consideration of time sequence preference of decision maker [J]. Journal of Computer Applications, 2019, 39(6): 1626-1631. |
[8] | WEN Chang, LIU Yu, GU Jinguang. Evolution relationship extraction of emergency based on attention-based bidirectional long short-term memory network model [J]. Journal of Computer Applications, 2019, 39(6): 1646-1651. |
[9] | ZHANG Li, SUN Jun, LI Dawei, NIU Minghang, GAO Yidan. Rolling bearing sub-health recognition algorithm based on fusion deep learning [J]. Journal of Computer Applications, 2018, 38(8): 2224-2229. |
[10] | WANG Shasha, FENG Ziliang, FU Keren. Saliency detection method based on graph node centrality and spatial autocorrelation [J]. Journal of Computer Applications, 2018, 38(12): 3547-3556. |
[11] | WANG Jian, ZHANG Zhiyong, QIAO Kuoyuan. Evidence combination rule with similarity collision reduced [J]. Journal of Computer Applications, 2018, 38(10): 2794-2800. |
[12] | TAI Yingying, PANG Ying, DUAN Keke, FU Yunpeng. Dynamic algorithm of load balancing based on D-S evidence theory with improved weight [J]. Journal of Computer Applications, 2018, 38(10): 2976-2981. |
[13] | WANG Xuqiao, WANG Jinkun. Integrated indoor positioning algorithm based on D-S evidence theory [J]. Journal of Computer Applications, 2017, 37(4): 1198-1201. |
[14] | ZHU Lun. Hesitant fuzzy decision-making method based on regret theory and evidence theory [J]. Journal of Computer Applications, 2017, 37(2): 540-545. |
[15] | GAO Mingxia, CHEN Furong. Credibility evaluating method of Chinese microblog based on information fusion [J]. Journal of Computer Applications, 2016, 36(8): 2071-2075. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||