Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3371-3378.DOI: 10.11772/j.issn.1001-9081.2023111677
• Artificial intelligence • Previous Articles Next Articles
Linqin WANG1,2,3, Te ZHANG1, Zhihong XU1,2,3, Yongfeng DONG1,2,3(), Guowei YANG4
Received:
2023-12-05
Revised:
2024-04-26
Accepted:
2024-05-11
Online:
2024-05-30
Published:
2024-11-10
Contact:
Yongfeng DONG
About author:
ZHANG Te, born in 1997, M. S. Her research interests include intelligent information processing, knowledge graph.Supported by:
王利琴1,2,3, 张特1, 许智宏1,2,3, 董永峰1,2,3(), 杨国伟4
通讯作者:
董永峰
作者简介:
王利琴(1980—),女,河北张家口人,高级实验师,博士,CCF会员,主要研究方向:智能信息处理、知识图谱基金资助:
CLC Number:
Linqin WANG, Te ZHANG, Zhihong XU, Yongfeng DONG, Guowei YANG. Fusing entity semantic and structural information for knowledge graph reasoning[J]. Journal of Computer Applications, 2024, 44(11): 3371-3378.
王利琴, 张特, 许智宏, 董永峰, 杨国伟. 融合实体语义及结构信息的知识图谱推理[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3371-3378.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023111677
数据集 | 编码器 | 解码器 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
学习率 | 权重衰减 | 随机失活 | 训练次数 | 注意力头数 | 嵌入维度 | 学习率 | 权重衰减 | 随机失活 | 训练次数 | 卷积核个数 | 卷积核大小 | |
Kinship | 10-3 | 10-7 | 0.3 | 4 000 | 2 | 200 | 10-3 | 10-6 | 0.0 | 400 | 50 | 1×3 |
NELL-995 | 10-4 | 10-7 | 0.5 | 3 000 | 2 | 200 | 10-4 | 0.5×10-5 | 0.3 | 200 | 400 | 1×3 |
FB15K-237 | 10-4 | 10-7 | 0.5 | 3 200 | 2 | 200 | 10-4 | 0.5×10-7 | 0.2 | 200 | 50 | 1×3 |
Tab. 1 Hyperparameters setting of encoder and decoder on all datasets
数据集 | 编码器 | 解码器 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
学习率 | 权重衰减 | 随机失活 | 训练次数 | 注意力头数 | 嵌入维度 | 学习率 | 权重衰减 | 随机失活 | 训练次数 | 卷积核个数 | 卷积核大小 | |
Kinship | 10-3 | 10-7 | 0.3 | 4 000 | 2 | 200 | 10-3 | 10-6 | 0.0 | 400 | 50 | 1×3 |
NELL-995 | 10-4 | 10-7 | 0.5 | 3 000 | 2 | 200 | 10-4 | 0.5×10-5 | 0.3 | 200 | 400 | 1×3 |
FB15K-237 | 10-4 | 10-7 | 0.5 | 3 200 | 2 | 200 | 10-4 | 0.5×10-7 | 0.2 | 200 | 50 | 1×3 |
模型 | Kinship | NELL-995 | FB15K-237 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hits@1 | Hits@3 | Hits@10 | MRR | Hits@1 | Hits@3 | Hits@10 | MRR | Hits@1 | Hits@3 | Hits@10 | MRR | |
TransE | 0.009 | 0.643 | 0.841 | 0.309 | 0.344 | 0.472 | 0.501 | 0.401 | 0.198 | 0.376 | 0.441 | 0.279 |
DistMult | 0.367 | 0.581 | 0.867 | 0.516 | 0.401 | 0.524 | 0.610 | 0.485 | 0.199 | 0.301 | 0.446 | 0.281 |
ComplEx | 0.733 | 0.899 | 0.971 | 0.823 | 0.399 | 0.528 | 0.606 | 0.482 | 0.194 | 0.297 | 0.450 | 0.278 |
ConvE | 0.738 | 0.917 | 0.981 | 0.833 | 0.403 | 0.531 | 0.613 | 0.491 | 0.225 | 0.341 | 0.497 | 0.312 |
ConvKB | 0.436 | 0.755 | 0.953 | 0.614 | 0.370 | 0.470 | 0.545 | 0.430 | 0.198 | 0.324 | 0.471 | 0.289 |
R-GCN | 0.030 | 0.088 | 0.239 | 0.109 | 0.082 | 0.126 | 0.188 | 0.120 | 0.100 | 0.181 | 0.300 | 0.164 |
eR-GCN | 0.385 | 0.624 | 0.856 | 0.439 | 0.379 | 0.462 | 0.535 | 0.427 | 0.245 | 0.351 | 0.492 | 0.320 |
KBGAT | 0.859 | 0.941 | 0.980 | 0.904 | 0.447 | 0.564 | 0.695 | 0.530 | 0.460 | 0.540 | 0.626 | 0.518 |
EIGAT | 0.464 | 0.584 | 0.545 | |||||||||
GRULR | 0.568 | 0.824 | 0.912 | 0.715 | — | — | — | — | 0.245 | 0.360 | 0.497 | 0.329 |
SQUIRE | — | — | — | — | 0.434 | 0.570 | 0.682 | 0.519 | 0.341 | 0.476 | 0.615 | 0.433 |
HyGGE | 0.938 | 0.954 | 0.974 | 0.949 | 0.606 | 0.710 | 0.278 | 0.385 | 0.571 | 0.368 | ||
FESSI | 0.953 | 0.969 | 0.985 | 0.964 | 0.489 | 0.736 | 0.565 | 0.479 | 0.574 | 0.670 | 0.562 |
Tab. 2 Comparison of experimental results of different models
模型 | Kinship | NELL-995 | FB15K-237 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hits@1 | Hits@3 | Hits@10 | MRR | Hits@1 | Hits@3 | Hits@10 | MRR | Hits@1 | Hits@3 | Hits@10 | MRR | |
TransE | 0.009 | 0.643 | 0.841 | 0.309 | 0.344 | 0.472 | 0.501 | 0.401 | 0.198 | 0.376 | 0.441 | 0.279 |
DistMult | 0.367 | 0.581 | 0.867 | 0.516 | 0.401 | 0.524 | 0.610 | 0.485 | 0.199 | 0.301 | 0.446 | 0.281 |
ComplEx | 0.733 | 0.899 | 0.971 | 0.823 | 0.399 | 0.528 | 0.606 | 0.482 | 0.194 | 0.297 | 0.450 | 0.278 |
ConvE | 0.738 | 0.917 | 0.981 | 0.833 | 0.403 | 0.531 | 0.613 | 0.491 | 0.225 | 0.341 | 0.497 | 0.312 |
ConvKB | 0.436 | 0.755 | 0.953 | 0.614 | 0.370 | 0.470 | 0.545 | 0.430 | 0.198 | 0.324 | 0.471 | 0.289 |
R-GCN | 0.030 | 0.088 | 0.239 | 0.109 | 0.082 | 0.126 | 0.188 | 0.120 | 0.100 | 0.181 | 0.300 | 0.164 |
eR-GCN | 0.385 | 0.624 | 0.856 | 0.439 | 0.379 | 0.462 | 0.535 | 0.427 | 0.245 | 0.351 | 0.492 | 0.320 |
KBGAT | 0.859 | 0.941 | 0.980 | 0.904 | 0.447 | 0.564 | 0.695 | 0.530 | 0.460 | 0.540 | 0.626 | 0.518 |
EIGAT | 0.464 | 0.584 | 0.545 | |||||||||
GRULR | 0.568 | 0.824 | 0.912 | 0.715 | — | — | — | — | 0.245 | 0.360 | 0.497 | 0.329 |
SQUIRE | — | — | — | — | 0.434 | 0.570 | 0.682 | 0.519 | 0.341 | 0.476 | 0.615 | 0.433 |
HyGGE | 0.938 | 0.954 | 0.974 | 0.949 | 0.606 | 0.710 | 0.278 | 0.385 | 0.571 | 0.368 | ||
FESSI | 0.953 | 0.969 | 0.985 | 0.964 | 0.489 | 0.736 | 0.565 | 0.479 | 0.574 | 0.670 | 0.562 |
模型 | Kinship | NELL-995 | FB15K-237 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hits@1 | Hits@3 | Hits@10 | MRR | Hits@1 | Hits@3 | Hits@10 | MRR | Hits@1 | Hits@3 | Hits@10 | MRR | |
-R-GCN | 0.948 | 0.963 | 0.980 | 0.961 | 0.483 | 0.594 | 0.722 | 0.556 | 0.473 | 0.569 | 0.662 | 0.540 |
-Att | 0.952 | 0.966 | 0.981 | 0.962 | 0.486 | 0.596 | 0.732 | 0.560 | 0.476 | 0.570 | 0.668 | 0.545 |
FESSI | 0.953 | 0.969 | 0.985 | 0.964 | 0.489 | 0.601 | 0.736 | 0.565 | 0.479 | 0.574 | 0.670 | 0.562 |
Tab. 3 Experimental results of module ablation
模型 | Kinship | NELL-995 | FB15K-237 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hits@1 | Hits@3 | Hits@10 | MRR | Hits@1 | Hits@3 | Hits@10 | MRR | Hits@1 | Hits@3 | Hits@10 | MRR | |
-R-GCN | 0.948 | 0.963 | 0.980 | 0.961 | 0.483 | 0.594 | 0.722 | 0.556 | 0.473 | 0.569 | 0.662 | 0.540 |
-Att | 0.952 | 0.966 | 0.981 | 0.962 | 0.486 | 0.596 | 0.732 | 0.560 | 0.476 | 0.570 | 0.668 | 0.545 |
FESSI | 0.953 | 0.969 | 0.985 | 0.964 | 0.489 | 0.601 | 0.736 | 0.565 | 0.479 | 0.574 | 0.670 | 0.562 |
1 | PAULHEIM H. Knowledge graph refinement: a survey of approaches and evaluation methods[J]. Semantic Web, 2017, 8(3): 489-508. |
2 | 田玲,张谨川,张晋豪,等.知识图谱综述——表示、构建、推理与知识超图理论[J].计算机应用,2021,41(8):2161-2186. |
TIAN L, ZHANG J C, ZHANG J H, et al. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8): 2161-2186. | |
3 | 徐有为,张宏军,程恺,等.知识图谱嵌入研究综述[J].计算机工程与应用,2022,58(9):30-50. |
XU Y W, ZHANG H J, CHENG K, et al. Comprehensive survey on knowledge graph embedding[J]. Computer Engineering and Applications, 2022, 58(9): 30-50. | |
4 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems — Volume 2. Red Hook, NY: Curran Associates Inc., 2013: 2787-2795. |
5 | WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2014: 1112-1119. |
6 | LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 2181-2187. |
7 | JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2015: 687-696. |
8 | XIAO H, HUANG M, HAO Y, et al. TransG: a generative mixture model for knowledge graph embedding[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2016: 2316-2325. |
9 | QIAN W, FU C, ZHU Y, et al. Translating embeddings for knowledge graph completion with relation attention mechanism[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: IJCAI, 2018: 4286-4292. |
10 | NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]// Proceedings of the 28th International Conference on Machine Learning. Madison, WI: Omnipress, 2011: 809-816. |
11 | YANG B, YIH W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. (2015-08-29) [2023-09-23].. |
12 | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York: JMLR.org, 2016: 2071-2080. |
13 | NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 1955-1961. |
14 | CAO Z, XU Q, YANG Z, et al. Dual quaternion knowledge graph embeddings[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 6894-6902. |
15 | DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 1811-1818. |
16 | JIANG X, WANG Q, WANG B. Adaptive convolution for multi-relational learning[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 978-987. |
17 | NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). Stroudsburg, PA: ACL, 2018: 327-333. |
18 | SCHLICHTKRULL M S, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]// Proceedings of the 2018 International Conference, LNCS 10843. Cham: Springer, 2018: 593-607. |
19 | COLOMBO S, ALIVANISTOS D, COCHEZ M. Potential energy to improve link prediction with relational graph neural networks[C]// Proceedings of the 2022 AAAI Spring Symposium on Machine Learning and Knowledge Engineering for Hybrid Intelligence. Aachen: CEUR Workshop Proceedings, 2022: 1-9. |
20 | NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in knowledge graphs[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019: 4710-4723. |
21 | ZHAO Y, ZHOU H, XIE R, et al. Incorporating global information in local attention for knowledge representation learning[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP. Stroudsburg, PA: ACL, 2021: 1341-1351. |
22 | TERU K K, DENIS E, HAMILTON W L. Inductive relation prediction by subgraph reasoning[C]// Proceedings of the 37th International Conference on Machine Learning Research. New York: JMLR.org, 2020: 9448-9457. |
23 | WANG L, CHU H, DONG Y, et al. Learning neighborhood-based embedding sequence for link prediction in temporal knowledge graphs[J]. Journal of Intelligent and Fuzzy Systems, 2022, 43(6): 7983-7994. |
24 | BAI Y, LV X, LI J, et al. SQUIRE: a sequence-to-sequence framework for multi-hop knowledge graph reasoning[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2022: 1649-1662. |
25 | YANG W, LI X, WANG P, et al. A joint knowledge graph reasoning method[C]// Proceedings of the 2022 IEEE International Conference on Dependable, Autonomic and Secure Computing/ International Conference on Pervasive Intelligence and Computing/ International Conference on Cloud and Big Data Computing/ International Conference on Cyber Science and Technology Congress. Piscataway: IEEE, 2022: 1-6. |
26 | WANG Y, WANG H, LU W, et al. HyGGE: hyperbolic graph attention network for reasoning over knowledge graphs[J]. Information Sciences, 2023, 630: 190-205. |
27 | ZHOU J, DU Y, ZHANG R, et al. Adaptive depth graph attention networks[EB/OL]. [2023-09-23].. |
28 | LIN X V, SOCHER R, XIONG C. Multi-hop knowledge graph reasoning with reward shaping[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 3243-3253. |
29 | XIONG W, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2017: 564-573. |
30 | TOUTANOVA K, CHEN D, PANTEL P, et al. Representing text for joint embedding of text and knowledge bases[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2015: 1499-1509. |
[1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[2] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. |
[3] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[4] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[5] | Tianci KE, Jianhua LIU, Shuihua SUN, Zhixiong ZHENG, Zijie CAI. Aspect-level sentiment analysis model combining strong association dependency and concise syntax [J]. Journal of Computer Applications, 2024, 44(6): 1786-1795. |
[6] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[7] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[8] | Xiaoyan ZHAO, Yan KUANG, Menghan WANG, Peiyan YUAN. Device-to-device content sharing mechanism based on knowledge graph [J]. Journal of Computer Applications, 2024, 44(4): 995-1001. |
[9] | Lei GUO, Zhen JIA, Tianrui LI. Relational and interactive graph attention network for aspect-level sentiment analysis [J]. Journal of Computer Applications, 2024, 44(3): 696-701. |
[10] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[11] | Wenjuan JIANG, Yi GUO, Jiaojiao FU. Reasoning question answering model of complex temporal knowledge graph with graph attention [J]. Journal of Computer Applications, 2024, 44(10): 3047-3057. |
[12] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[13] | Chunlei WANG, Xiao WANG, Kai LIU. Multimodal knowledge graph representation learning: a review [J]. Journal of Computer Applications, 2024, 44(1): 1-15. |
[14] | Hongbin WANG, Xiao FANG, Hong JIANG. Commonsense reasoning and question answering method with three-dimensional semantic features [J]. Journal of Computer Applications, 2024, 44(1): 138-144. |
[15] | Hongjun HENG, Dingcheng YANG. Knowledge enhanced aspect word interactive graph neural network [J]. Journal of Computer Applications, 2023, 43(8): 2412-2419. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||