Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 624-632.DOI: 10.11772/j.issn.1001-9081.2024010039
• Multimedia computing and computer simulation • Previous Articles
Hong SHANGGUAN1,2(), Huiying REN1, Xiong ZHANG1, Xinglong HAN1, Zhiguo GUI2, Yanling WANG2,3
Received:
2024-01-16
Revised:
2024-04-13
Accepted:
2024-04-15
Online:
2024-05-09
Published:
2025-02-10
Contact:
Hong SHANGGUAN
About author:
REN Huiying, born in 1998, M. S. candidate. Her research interests include medical image processing, deep learning.Supported by:
上官宏1,2(), 任慧莹1, 张雄1, 韩兴隆1, 桂志国2, 王燕玲2,3
通讯作者:
上官宏
作者简介:
任慧莹(1998—),女,黑龙江齐齐哈尔人,硕士研究生,主要研究方向:医学图像处理、深度学习基金资助:
CLC Number:
Hong SHANGGUAN, Huiying REN, Xiong ZHANG, Xinglong HAN, Zhiguo GUI, Yanling WANG. Low-dose CT denoising model based on dual encoder-decoder generative adversarial network[J]. Journal of Computer Applications, 2025, 45(2): 624-632.
上官宏, 任慧莹, 张雄, 韩兴隆, 桂志国, 王燕玲. 基于双编码器双解码器GAN的低剂量CT降噪模型[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 624-632.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010039
实验 序号 | 方法 | 生成器 | PSNR/dB↑ | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Enc1-Dec1 | Enc2-Dec2 | 双通道交互关系 | ||||||||
编码器 | 解码器 | 编码器 | 解码器 | |||||||
EFAL | DFEL | RCD | RDC | EU → ED | EU → DD | ED → DU | DD → DU | |||
1 | OSESD | √ | √ | 31.373 1±1.752 9 | ||||||
OSEDD | √ | √ | √ | √ | 31.454 0±1.745 2 | |||||
ODESD | √ | √ | √ | √ | 31.399 9±1.748 2 | |||||
DualED-GAN | √ | √ | √ | √ | √ | √ | 31.473 6±1.749 1 | |||
2 | Onocon | √ | √ | √ | √ | 30.747 2±1.757 1 | ||||
OUEDE | √ | √ | √ | √ | √ | 31.066 2±1.751 2 | ||||
OUEDD | √ | √ | √ | √ | √ | 31.001 2±1.749 1 | ||||
ODEUD | √ | √ | √ | √ | √ | 31.125 9±1.749 5 | ||||
ODDUD | √ | √ | √ | √ | √ | 31.002 9±1.751 1 | ||||
3 | O0 | 0 | 0 | 0 | 0 | √ | √ | 30.855 7±1.798 2 | ||
O1 | 1 | 1 | 1 | 1 | √ | √ | 31.124 1±1.774 0 | |||
O2 | 2 | 2 | 2 | 2 | √ | √ | 31.136 8±1.775 9 | |||
DualED-GAN | 3 | 3 | 3 | 3 | √ | √ | 31.142 4±1.758 7 |
Tab. 1 Average PSNR values statistics for denoising results obtained by different ablation networks
实验 序号 | 方法 | 生成器 | PSNR/dB↑ | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Enc1-Dec1 | Enc2-Dec2 | 双通道交互关系 | ||||||||
编码器 | 解码器 | 编码器 | 解码器 | |||||||
EFAL | DFEL | RCD | RDC | EU → ED | EU → DD | ED → DU | DD → DU | |||
1 | OSESD | √ | √ | 31.373 1±1.752 9 | ||||||
OSEDD | √ | √ | √ | √ | 31.454 0±1.745 2 | |||||
ODESD | √ | √ | √ | √ | 31.399 9±1.748 2 | |||||
DualED-GAN | √ | √ | √ | √ | √ | √ | 31.473 6±1.749 1 | |||
2 | Onocon | √ | √ | √ | √ | 30.747 2±1.757 1 | ||||
OUEDE | √ | √ | √ | √ | √ | 31.066 2±1.751 2 | ||||
OUEDD | √ | √ | √ | √ | √ | 31.001 2±1.749 1 | ||||
ODEUD | √ | √ | √ | √ | √ | 31.125 9±1.749 5 | ||||
ODDUD | √ | √ | √ | √ | √ | 31.002 9±1.751 1 | ||||
3 | O0 | 0 | 0 | 0 | 0 | √ | √ | 30.855 7±1.798 2 | ||
O1 | 1 | 1 | 1 | 1 | √ | √ | 31.124 1±1.774 0 | |||
O2 | 2 | 2 | 2 | 2 | √ | √ | 31.136 8±1.775 9 | |||
DualED-GAN | 3 | 3 | 3 | 3 | √ | √ | 31.142 4±1.758 7 |
Fig. 8 Enlarged display for different denoising results of different models and differences between noise suppressed by different models and ideal noise at ROI4
降噪模型 | PSNR/dB↑ | SSIM↑ | VIF↑ | MSE↓ | NIQE↓ |
---|---|---|---|---|---|
BM3D[ | 27.336 4±2.273 4 | 0.727 4±0.047 4 | 0.272 2±0.035 9 | 138.420 0±81.800 0 | 6.501 8±1.046 0 |
pix2pix[ | 28.318 3±1.659 9 | 0.811 1±0.054 5 | 0.334 2±0.054 3 | 102.726 5±37.389 9 | 4.763 8±0.960 0 |
RED-CNN[ | 30.511 4±1.764 7 | 0.866 0±0.041 8 | 0.390 2±0.055 9 | 62.861 3±26.771 1 | 5.038 4±0.871 3 |
TED-Net[ | 31.080 1±1.758 5 | 0.844 2±0.042 2 | 0.403 9±0.058 5 | 54.992 6±22.387 7 | 4.382 3±1.092 1 |
HFSGAN[ | 30.081 8±0.044 5 | 0.852 7±1.588 9 | 0.373 3±0.052 7 | 68.187 0±24.996 2 | 5.257 1±0.855 3 |
SEDD-GAN[ | 30.838 6±1.509 8 | 0.870 6±0.038 3 | 0.400 8±0.049 4 | 57.023 6±20.787 4 | 5.091 4±1.132 4 |
DESD-GAN[ | 31.134 9±1.899 1 | 0.873 8±0.042 0 | 0.418 6±0.057 6 | 55.260 2±26.157 1 | 5.026 8±0.961 6 |
CMFHGAN[ | 30.891 7±2.281 4 | 0.872 7±0.042 8 | 0.485 7±0.052 1 | 63.802 9±51.636 6 | 4.924 9±0.976 2 |
DEA-Net[ | 30.983 6±1.698 6 | 0.859 1±0.045 7 | 0.458 9±0.054 9 | 55.904 1±21.784 1 | 4.424 5±1.006 1 |
DualED-GAN | 31.473 6±1.749 1 | 0.876 6±0.041 2 | 0.426 0±0.059 0 | 50.154 2±20.056 8 | 4.842 1±0.988 9 |
Tab. 2 Five quantitative analysis values statistics for denoising results obtained by different models on test set
降噪模型 | PSNR/dB↑ | SSIM↑ | VIF↑ | MSE↓ | NIQE↓ |
---|---|---|---|---|---|
BM3D[ | 27.336 4±2.273 4 | 0.727 4±0.047 4 | 0.272 2±0.035 9 | 138.420 0±81.800 0 | 6.501 8±1.046 0 |
pix2pix[ | 28.318 3±1.659 9 | 0.811 1±0.054 5 | 0.334 2±0.054 3 | 102.726 5±37.389 9 | 4.763 8±0.960 0 |
RED-CNN[ | 30.511 4±1.764 7 | 0.866 0±0.041 8 | 0.390 2±0.055 9 | 62.861 3±26.771 1 | 5.038 4±0.871 3 |
TED-Net[ | 31.080 1±1.758 5 | 0.844 2±0.042 2 | 0.403 9±0.058 5 | 54.992 6±22.387 7 | 4.382 3±1.092 1 |
HFSGAN[ | 30.081 8±0.044 5 | 0.852 7±1.588 9 | 0.373 3±0.052 7 | 68.187 0±24.996 2 | 5.257 1±0.855 3 |
SEDD-GAN[ | 30.838 6±1.509 8 | 0.870 6±0.038 3 | 0.400 8±0.049 4 | 57.023 6±20.787 4 | 5.091 4±1.132 4 |
DESD-GAN[ | 31.134 9±1.899 1 | 0.873 8±0.042 0 | 0.418 6±0.057 6 | 55.260 2±26.157 1 | 5.026 8±0.961 6 |
CMFHGAN[ | 30.891 7±2.281 4 | 0.872 7±0.042 8 | 0.485 7±0.052 1 | 63.802 9±51.636 6 | 4.924 9±0.976 2 |
DEA-Net[ | 30.983 6±1.698 6 | 0.859 1±0.045 7 | 0.458 9±0.054 9 | 55.904 1±21.784 1 | 4.424 5±1.006 1 |
DualED-GAN | 31.473 6±1.749 1 | 0.876 6±0.041 2 | 0.426 0±0.059 0 | 50.154 2±20.056 8 | 4.842 1±0.988 9 |
1 | 韩泽芳,上官宏,张雄,等. 基于深度学习的低剂量CT成像算法研究进展[J]. CT理论与应用研究, 2022, 31(1): 117-134. |
HAN Z F, SHANGGUAN H, ZHANG X, et al. Advances in research on low-dose CT imaging algorithm based on deep learning[J]. Computerized Tomography Theory and Applications, 2022, 31(1): 117-134. | |
2 | NAIDICH D P, MARSHALL C H, GRIBBIN C, et al. Low-dose CT of the lungs: preliminary observations[J]. Radiology, 1990, 175(3): 729-731. |
3 | 张权. 低剂量X线CT重建若干问题研究[D]. 南京:东南大学, 2015:11-12. |
ZHANG Q. A study on some problems in image reconstruction for low-dose CT system[D]. Nanjing: Southeast University, 2015: 11-12. | |
4 | CHEN Y, SHI L, FENG Q, et al. Artifact suppressed dictionary learning for low-dose CT image processing[J]. IEEE Transactions on Medical Imaging, 2014, 33(12): 2271-2292. |
5 | CHEN H, ZHANG Y, KALRA M K, et al. Low-dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN)[J]. IEEE Transactions on Medical Imaging, 2017, 36(12): 2524-2535. |
6 | CHEN M, PU Y F, BAI Y C. Low-dose CT image denoising using residual convolutional network with fractional TV loss[J]. Neurocomputing, 2021, 452: 510-520. |
7 | 郝文强,崔学英,郭映亭. 基于Transformer和CNN的低剂量CT图像去噪网络[J]. 海南师范大学学报(自然科学版), 2023, 36(2): 176-182. |
HAO W Q, CUI X Y, GUO Y T. Low-dose CT image denoising network based on Transformer and CNN[J]. Journal of Hainan Normal University (Natural Science), 2023, 36(2): 176-182. | |
8 | WEI Y, ZHANG Z, ZHANG H, et al. A coarse-to-fine multi-stream hybrid deraining network for single image deraining[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 628-637. |
9 | YI X, BABYN P. Sharpness-aware low-dose CT denoising using conditional generative adversarial network[J]. Journal of Digital Imaging, 2018, 31(5): 655-669. |
10 | HAN Z, SHANGGUAN H, ZHANG X, et al. A dual-encoder-single-decoder based low-dose CT denoising network[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(7): 3251-3260. |
11 | YASARLA R, PATEL V M. Confidence measure guided single image de-raining[J]. IEEE Transactions on Image Processing, 2020, 29: 4544-4555. |
12 | JIAO F, GUI Z, LIU Y, et al. Low-dose CT image denoising via frequency division and encoder-dual decoder GAN[J]. Signal, Image and Video Processing, 2021, 15(8): 1907-1915. |
13 | 韩静. 医学诊疗任务导向的低剂量CT图像伪影抑制研究[D]. 太原:太原科技大学, 2023:4-5. |
HAN J. Research on medical diagnosis and treatment task oriented low dose CT image artifact suppression[D]. Taiyuan: Taiyuan University of Science and Technology, 2023: 4-5. | |
14 | ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 695-704. |
15 | HU X, FU C W, ZHU L, et al. Depth-attentional features for single-image rain removal[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8014-8023. |
16 | GUO S, YAN Z, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1712-1722. |
17 | WANG Y, GONG D, YANG J, et al. An effective two-branch model-based deep network for single image deraining[EB/OL]. [2023-05-14].. |
18 | WANG Y, ZHANG H, LIU Y, et al. Gradient information guided deraining with a novel network and adversarial training[EB/OL]. [2023-10-09].. |
19 | HEINRICH M P, STILLE M, BUZUG T M. Residual U-net convolutional neural network architecture for low-dose CT denoising[J]. Current Directions in Biomedical Engineering, 2018, 4(1): 297-300. |
20 | 韩兴隆. 低剂量CT图像伪影抑制的编解码特征提取网络研究[D]. 太原:太原科技大学, 2022:31-32. |
HAN X L. Research on encoder-decoder feature extraction network for low-dose CT[D]. Taiyuan: Taiyuan University of Science and Technology, 2022: 31-32. | |
21 | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1125-1134. |
22 | WU L, ZHANG X, CHEN H, et al. VP-NIQE: an opinion-unaware visual perception natural image quality evaluator[J]. Neurocomputing, 2021, 463: 17-28. |
23 | American Association of Physicists in Medicine. Low dose CT grand challenge[DS/OL]. [2023-04-20].. |
24 | FERUGLIO P F, VINEGONI C, GROS J, et al. Block matching 3D random noise filtering for absorption optical projection tomography[J]. Physics in Medicine and Biology, 2010, 55(18): No.5401. |
25 | WANG D, WU Z, YU H. TED-Net: convolution-free T2T vision transformer-based encoder-decoder dilation network for low-dose CT denoising[C]// Proceedings of the 2021 International Workshop on Machine Learning in Medical Imaging, LNCS 12966. Cham: Springer, 2021: 416-425. |
26 | CHEN Z, HE Z, LU Z M. DEA-Net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Transactions on Image Processing, 2024, 33: 1002-1015. |
27 | YANG L, SHANGGUAN H, ZHANG X, et al. High-frequency sensitive generative adversarial network for low-dose CT image denoising[J]. IEEE Access, 2020, 8: 930-943. |
28 | HAN Z, SHANGGUAN H, ZHANG X, et al. A coarse-to-fine multi-scale feature hybrid low-dose CT denoising network[J]. Signal Processing: Image Communication, 2023, 118: No.117009. |
29 | CHEN C, CARLSON D, GAN Z, et al. Bridging the gap between stochastic gradient MCMC and stochastic optimization[C]// Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2016: 1051-1060. |
30 | YAO S, LIN W, ONG E, et al. Contrast signal-to-noise ratio for image quality assessment[C]// Proceedings of the 2005 IEEE International Conference on Image Processing — Volume 1. Piscataway: IEEE, 2005: 397-401. |
31 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |
32 | HAN Y, CAI Y, CAO Y, et al. A new image fusion performance metric based on visual information fidelity[J]. Information Fusion, 2013, 14(2): 127-135. |
33 | BAUER E, KOHAVI R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants[J]. Machine Learning, 1999, 36(1/2): 105-139. |
[1] | Xin LIU, Dawei YANG, Changheng SHAO, Haiwen WANG, Mingjiang PANG, Yanru LI. Hierarchical multi-label classification model for public complaints with long-tailed distribution [J]. Journal of Computer Applications, 2025, 45(1): 82-89. |
[2] | Zhigang XU, Chuang ZHANG. Multi-level color restoration of mural image based on gated positional encoding [J]. Journal of Computer Applications, 2024, 44(9): 2931-2937. |
[3] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
[4] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[5] | Chenqian LI, Jun LIU. Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention [J]. Journal of Computer Applications, 2024, 44(8): 2604-2610. |
[6] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[7] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[8] | Junfeng SHEN, Xingchen ZHOU, Can TANG. Dual-channel sentiment analysis model based on improved prompt learning method [J]. Journal of Computer Applications, 2024, 44(6): 1796-1806. |
[9] | Xun YAO, Zhongzheng QIN, Jie YANG. Generative label adversarial text classification model [J]. Journal of Computer Applications, 2024, 44(6): 1781-1785. |
[10] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[11] | Zongyu LI, Siwei QIANG, Xiaobo GUO, Zhenfeng ZHU. Re-weighted adversarial variational autoencoder and its application in industrial causal effect estimation [J]. Journal of Computer Applications, 2024, 44(4): 1099-1106. |
[12] | Weina DONG, Jia LIU, Xiaozhong PAN, Lifeng CHEN, Wenquan SUN. High-capacity robust image steganography scheme based on encoding-decoding network [J]. Journal of Computer Applications, 2024, 44(3): 772-779. |
[13] | Yi ZHENG, Cunyi LIAO, Tianqian ZHANG, Ji WANG, Shouyin LIU. Image denoising-based cell-level RSRP estimation method for urban areas [J]. Journal of Computer Applications, 2024, 44(3): 855-862. |
[14] | Ruifeng HOU, Pengcheng ZHANG, Liyuan ZHANG, Zhiguo GUI, Yi LIU, Haowen ZHANG, Shubin WANG. Iterative denoising network based on total variation regular term expansion [J]. Journal of Computer Applications, 2024, 44(3): 916-921. |
[15] | Zhuo ZHANG, Huazhu CHEN. Deep subspace clustering based on multiscale self-representation learning with consistency and diversity [J]. Journal of Computer Applications, 2024, 44(2): 353-359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||