Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1424-1431.DOI: 10.11772/j.issn.1001-9081.2024060819
• 2024 China Granular Computing and Knowledge Discovery Conference (CGCKD2024) • Previous Articles
Ying YU1(), Feng ZHU1, Hongjian FU2, Yiwen LUO2, Jin QIAN1, Yuchao ZHENG1
Received:
2024-06-18
Revised:
2024-07-08
Accepted:
2024-07-11
Online:
2024-07-25
Published:
2025-05-10
Contact:
Ying YU
About author:
YU Ying, born in 1979, Ph. D., professor. Her research interests include machine learning, computer vision, granular computing.Supported by:
余鹰1(), 朱锋1, 付红剑2, 罗逸文2, 钱进1, 郑宇超1
通讯作者:
余鹰
作者简介:
余鹰(1979—),女,江西上饶人,教授,博士,CCF会员,主要研究方向:机器学习、计算机视觉、粒计算基金资助:
CLC Number:
Ying YU, Feng ZHU, Hongjian FU, Yiwen LUO, Jin QIAN, Yuchao ZHENG. Expert counter-evaluation model with three-way decision and entropy weight TOPSIS[J]. Journal of Computer Applications, 2025, 45(5): 1424-1431.
余鹰, 朱锋, 付红剑, 罗逸文, 钱进, 郑宇超. 联合三支决策与熵权TOPSIS的专家反评估模型[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1424-1431.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060819
指标名称 | 指标属性 | 指标名称 | 指标属性 |
---|---|---|---|
学历 | 极大型 | 科研项目 | 极大型 |
职称 | 极大型 | 科研成果 | 极大型 |
工龄 | 区间型 | 评审量 | 极大型 |
学术称号 | 极大型 | 偏离度 | 极小型 |
Tab. 1 Evaluation index attributes
指标名称 | 指标属性 | 指标名称 | 指标属性 |
---|---|---|---|
学历 | 极大型 | 科研项目 | 极大型 |
职称 | 极大型 | 科研成果 | 极大型 |
工龄 | 区间型 | 评审量 | 极大型 |
学术称号 | 极大型 | 偏离度 | 极小型 |
指标 | 计算描述 |
---|---|
学历 | 博士、硕士、学士及其他,分别按照(100,80,60,40)评分 |
职称 | 正高级、副高级、中级、初级及无职称,分别按照(100,80,60,40,20)评分 |
工龄 | 工龄=当前年-参加工作年,区间型指标,25~35为理想值 |
Tab. 2 Calculation methods of basic situation indexes
指标 | 计算描述 |
---|---|
学历 | 博士、硕士、学士及其他,分别按照(100,80,60,40)评分 |
职称 | 正高级、副高级、中级、初级及无职称,分别按照(100,80,60,40,20)评分 |
工龄 | 工龄=当前年-参加工作年,区间型指标,25~35为理想值 |
专家序号 | 基本情况 | 专业水平 | 评审业绩 | |||||
---|---|---|---|---|---|---|---|---|
学历 | 职称 | 工龄 | 学术 称号 | 科研项目 | 科研成果 | 评审量 | 偏离度 | |
1 | 80 | 100 | 42 | 60 | 340 | 410 | 52 | 1.42 |
2 | 100 | 80 | 23 | 60 | 370 | 290 | 124 | 1.44 |
3 | 60 | 100 | 38 | 20 | 140 | 60 | 60 | 3.65 |
4 | 100 | 100 | 35 | 60 | 380 | 340 | 140 | 1.10 |
5 | 80 | 100 | 29 | 40 | 230 | 190 | 46 | 2.08 |
6 | 80 | 100 | 37 | 60 | 220 | 280 | 76 | 1.23 |
7 | 60 | 80 | 17 | 20 | 90 | 70 | 40 | 3.45 |
8 | 60 | 80 | 20 | 20 | 150 | 90 | 72 | 3.46 |
9 | 100 | 100 | 29 | 80 | 540 | 670 | 94 | 0.82 |
10 | 100 | 80 | 35 | 40 | 270 | 240 | 90 | 2.48 |
11 | 100 | 80 | 18 | 40 | 180 | 260 | 96 | 2.04 |
12 | 80 | 100 | 33 | 40 | 290 | 170 | 52 | 2.50 |
13 | 100 | 100 | 36 | 80 | 520 | 550 | 168 | 0.95 |
14 | 100 | 80 | 25 | 60 | 230 | 240 | 122 | 1.84 |
15 | 100 | 100 | 29 | 60 | 220 | 280 | 42 | 1.95 |
16 | 100 | 100 | 34 | 80 | 580 | 720 | 108 | 0.62 |
17 | 60 | 80 | 22 | 20 | 170 | 80 | 94 | 3.10 |
18 | 80 | 100 | 34 | 60 | 310 | 250 | 92 | 1.77 |
19 | 100 | 100 | 27 | 60 | 310 | 230 | 112 | 1.70 |
20 | 80 | 100 | 40 | 40 | 280 | 230 | 46 | 2.15 |
21 | 100 | 100 | 24 | 80 | 490 | 510 | 134 | 1.00 |
22 | 100 | 100 | 27 | 40 | 220 | 260 | 176 | 2.07 |
23 | 80 | 100 | 19 | 40 | 290 | 210 | 108 | 2.46 |
24 | 100 | 100 | 25 | 80 | 630 | 690 | 94 | 0.70 |
25 | 80 | 100 | 38 | 40 | 210 | 240 | 44 | 2.38 |
Tab. 3 Initial values of evaluation indexes for sample experts
专家序号 | 基本情况 | 专业水平 | 评审业绩 | |||||
---|---|---|---|---|---|---|---|---|
学历 | 职称 | 工龄 | 学术 称号 | 科研项目 | 科研成果 | 评审量 | 偏离度 | |
1 | 80 | 100 | 42 | 60 | 340 | 410 | 52 | 1.42 |
2 | 100 | 80 | 23 | 60 | 370 | 290 | 124 | 1.44 |
3 | 60 | 100 | 38 | 20 | 140 | 60 | 60 | 3.65 |
4 | 100 | 100 | 35 | 60 | 380 | 340 | 140 | 1.10 |
5 | 80 | 100 | 29 | 40 | 230 | 190 | 46 | 2.08 |
6 | 80 | 100 | 37 | 60 | 220 | 280 | 76 | 1.23 |
7 | 60 | 80 | 17 | 20 | 90 | 70 | 40 | 3.45 |
8 | 60 | 80 | 20 | 20 | 150 | 90 | 72 | 3.46 |
9 | 100 | 100 | 29 | 80 | 540 | 670 | 94 | 0.82 |
10 | 100 | 80 | 35 | 40 | 270 | 240 | 90 | 2.48 |
11 | 100 | 80 | 18 | 40 | 180 | 260 | 96 | 2.04 |
12 | 80 | 100 | 33 | 40 | 290 | 170 | 52 | 2.50 |
13 | 100 | 100 | 36 | 80 | 520 | 550 | 168 | 0.95 |
14 | 100 | 80 | 25 | 60 | 230 | 240 | 122 | 1.84 |
15 | 100 | 100 | 29 | 60 | 220 | 280 | 42 | 1.95 |
16 | 100 | 100 | 34 | 80 | 580 | 720 | 108 | 0.62 |
17 | 60 | 80 | 22 | 20 | 170 | 80 | 94 | 3.10 |
18 | 80 | 100 | 34 | 60 | 310 | 250 | 92 | 1.77 |
19 | 100 | 100 | 27 | 60 | 310 | 230 | 112 | 1.70 |
20 | 80 | 100 | 40 | 40 | 280 | 230 | 46 | 2.15 |
21 | 100 | 100 | 24 | 80 | 490 | 510 | 134 | 1.00 |
22 | 100 | 100 | 27 | 40 | 220 | 260 | 176 | 2.07 |
23 | 80 | 100 | 19 | 40 | 290 | 210 | 108 | 2.46 |
24 | 100 | 100 | 25 | 80 | 630 | 690 | 94 | 0.70 |
25 | 80 | 100 | 38 | 40 | 210 | 240 | 44 | 2.38 |
指标名称 | 信息熵 | 信息效用值 | 权重 | 是否异常 |
---|---|---|---|---|
学历 | 0.995 3 | 0.004 7 | 0.020 0 | 否 |
职称 | 0.998 5 | 0.001 5 | 0.006 2 | 否 |
工龄 | 0.957 6 | 0.042 4 | 0.179 4 | 否 |
学术称号 | 0.975 6 | 0.024 4 | 0.103 2 | 否 |
科研项目 | 0.968 1 | 0.031 9 | 0.134 8 | 否 |
科研成果 | 0.945 1 | 0.054 9 | 0.232 3 | 是 |
评审量 | 0.972 9 | 0.027 1 | 0.114 7 | 否 |
偏离度 | 0.950 5 | 0.049 5 | 0.209 5 | 否 |
Tab. 4 Weight of each index
指标名称 | 信息熵 | 信息效用值 | 权重 | 是否异常 |
---|---|---|---|---|
学历 | 0.995 3 | 0.004 7 | 0.020 0 | 否 |
职称 | 0.998 5 | 0.001 5 | 0.006 2 | 否 |
工龄 | 0.957 6 | 0.042 4 | 0.179 4 | 否 |
学术称号 | 0.975 6 | 0.024 4 | 0.103 2 | 否 |
科研项目 | 0.968 1 | 0.031 9 | 0.134 8 | 否 |
科研成果 | 0.945 1 | 0.054 9 | 0.232 3 | 是 |
评审量 | 0.972 9 | 0.027 1 | 0.114 7 | 否 |
偏离度 | 0.950 5 | 0.049 5 | 0.209 5 | 否 |
专家序号 | 科研成果 | 规则条件 | 决策 |
---|---|---|---|
16 | 0.406 4 | 专家入库 (正域) | |
24 | 0.389 5 | ||
9 | 0.378 2 | ||
13 | 0.310 4 | ||
21 | 0.287 9 | 延迟评价 (边界域) | |
1 | 0.231 4 | ||
4 | 0.191 9 | ||
2 | 0.163 7 | ||
6 | 0.158 0 | ||
15 | 0.158 0 | ||
11 | 0.146 7 | ||
22 | 0.146 7 | ||
18 | 0.141 1 | ||
10 | 0.135 5 | ||
14 | 0.135 5 | ||
25 | 0.135 5 | ||
19 | 0.129 8 | ||
20 | 0.129 8 | ||
23 | 0.118 5 | ||
5 | 0.107 2 | ||
12 | 0.096 0 | ||
8 | 0.050 8 | 专家出库 (负域) | |
17 | 0.045 2 | ||
7 | 0.039 5 | ||
3 | 0.033 9 |
Tab. 5 Decision rule table
专家序号 | 科研成果 | 规则条件 | 决策 |
---|---|---|---|
16 | 0.406 4 | 专家入库 (正域) | |
24 | 0.389 5 | ||
9 | 0.378 2 | ||
13 | 0.310 4 | ||
21 | 0.287 9 | 延迟评价 (边界域) | |
1 | 0.231 4 | ||
4 | 0.191 9 | ||
2 | 0.163 7 | ||
6 | 0.158 0 | ||
15 | 0.158 0 | ||
11 | 0.146 7 | ||
22 | 0.146 7 | ||
18 | 0.141 1 | ||
10 | 0.135 5 | ||
14 | 0.135 5 | ||
25 | 0.135 5 | ||
19 | 0.129 8 | ||
20 | 0.129 8 | ||
23 | 0.118 5 | ||
5 | 0.107 2 | ||
12 | 0.096 0 | ||
8 | 0.050 8 | 专家出库 (负域) | |
17 | 0.045 2 | ||
7 | 0.039 5 | ||
3 | 0.033 9 |
指标名称 | 信息熵 | 信息效用值 | 修正后权重 |
---|---|---|---|
学历 | 0.997 8 | 0.002 2 | 0.008 5 |
职称 | 0.998 5 | 0.001 5 | 0.005 8 |
工龄 | 0.930 4 | 0.069 6 | 0.275 0 |
学术称号 | 0.990 7 | 0.009 3 | 0.036 7 |
科研项目 | 0.988 1 | 0.011 9 | 0.046 9 |
科研成果 | 0.986 3 | 0.013 7 | 0.054 1 |
评审量 | 0.967 0 | 0.033 0 | 0.130 5 |
偏离度 | 0.888 1 | 0.111 9 | 0.442 5 |
Tab. 6 Corrected index weights
指标名称 | 信息熵 | 信息效用值 | 修正后权重 |
---|---|---|---|
学历 | 0.997 8 | 0.002 2 | 0.008 5 |
职称 | 0.998 5 | 0.001 5 | 0.005 8 |
工龄 | 0.930 4 | 0.069 6 | 0.275 0 |
学术称号 | 0.990 7 | 0.009 3 | 0.036 7 |
科研项目 | 0.988 1 | 0.011 9 | 0.046 9 |
科研成果 | 0.986 3 | 0.013 7 | 0.054 1 |
评审量 | 0.967 0 | 0.033 0 | 0.130 5 |
偏离度 | 0.888 1 | 0.111 9 | 0.442 5 |
专家序号 | 正理想解距离 | 负理想解距离 | 相对贴近度 |
---|---|---|---|
21 | 0.043 3 | 0.355 3 | 0.891 4 |
4 | 0.057 0 | 0.340 0 | 0.856 5 |
6 | 0.129 2 | 0.284 2 | 0.687 5 |
2 | 0.121 6 | 0.257 2 | 0.679 0 |
19 | 0.166 7 | 0.236 2 | 0.586 2 |
18 | 0.184 3 | 0.222 7 | 0.547 3 |
14 | 0.191 6 | 0.219 3 | 0.533 8 |
1 | 0.212 7 | 0.227 1 | 0.516 3 |
22 | 0.230 7 | 0.215 8 | 0.483 3 |
15 | 0.236 3 | 0.194 8 | 0.451 8 |
5 | 0.262 0 | 0.178 8 | 0.405 7 |
10 | 0.318 9 | 0.163 9 | 0.339 5 |
12 | 0.334 3 | 0.158 3 | 0.321 4 |
11 | 0.284 4 | 0.106 5 | 0.272 4 |
20 | 0.293 1 | 0.086 8 | 0.228 5 |
25 | 0.321 2 | 0.094 2 | 0.226 7 |
23 | 0.340 0 | 0.066 5 | 0.163 5 |
Tab. 7 Evaluation results of TOPSIS
专家序号 | 正理想解距离 | 负理想解距离 | 相对贴近度 |
---|---|---|---|
21 | 0.043 3 | 0.355 3 | 0.891 4 |
4 | 0.057 0 | 0.340 0 | 0.856 5 |
6 | 0.129 2 | 0.284 2 | 0.687 5 |
2 | 0.121 6 | 0.257 2 | 0.679 0 |
19 | 0.166 7 | 0.236 2 | 0.586 2 |
18 | 0.184 3 | 0.222 7 | 0.547 3 |
14 | 0.191 6 | 0.219 3 | 0.533 8 |
1 | 0.212 7 | 0.227 1 | 0.516 3 |
22 | 0.230 7 | 0.215 8 | 0.483 3 |
15 | 0.236 3 | 0.194 8 | 0.451 8 |
5 | 0.262 0 | 0.178 8 | 0.405 7 |
10 | 0.318 9 | 0.163 9 | 0.339 5 |
12 | 0.334 3 | 0.158 3 | 0.321 4 |
11 | 0.284 4 | 0.106 5 | 0.272 4 |
20 | 0.293 1 | 0.086 8 | 0.228 5 |
25 | 0.321 2 | 0.094 2 | 0.226 7 |
23 | 0.340 0 | 0.066 5 | 0.163 5 |
1 | 张尧,林春.专家评审特征分析及专家反评估方法研究[J].工业工程,2020,23(6):124-130,154. |
ZHANG Y, LIN C. The review characteristics of expert and anti-assessment research[J]. Industrial Engineering Journal, 2020, 23(6): 124-130, 154. | |
2 | 汪建,王裴裴,丁俊.科技项目专家评审的元评价综合模型研究[J].科研管理,2020,41(2):183-192. |
WANG J, WANG P P, DING J. A comprehensive model on the meta-evaluation of science and technology projects by review experts[J]. Science Research Management, 2020, 41(2): 183-192. | |
3 | 杨健安,刘传斌,余乐安.基于相对逆序数的评审专家可信度评价方法[J]. 统计与决策,2022,38(3): 184-188. |
YANG J A, LIU C B, YU L A. Relative inverse ordinal number based credibility evaluation method for evaluation experts[J]. Statistics and Decision Making, 2022, 38(3): 184-188. | |
4 | 徐锦英,葛慧丽.同行评议专家信誉评价体系构建及实证研究[J].科技管理研究,2017,37(21):35-39. |
XU J Y, GE H L. Construction and empirical research on credibility evaluation system of peer reviewers[J]. Science and Technology Management Research, 2017, 37(21): 35-39. | |
5 | LI T, LI G, ZHANG M, et al. Research on performance and dynamic competency evaluation of bid evaluation experts based on weight interval number[J]. PLoS ONE, 2022, 17(7): No.e0269467. |
6 | WANG J, MA Q, LIU H C. A meta-evaluation model on science and technology project review experts using IVIF-BWM and MULTIMOORA[J]. Expert Systems with Applications, 2021, 168: No.114236. |
7 | 游庆根,张金隆,马辉民.基于熵权法的评审专家遴选模型研究[C]// 第十五届全国计算机模拟与信息技术学术会议论文集.长沙:管理学报,2015:275-282. |
YOU Q G, ZHANG J L, MA H M. Research on selection model of evaluation experts based on entropy weight method[C]// Proceedings of the 15th National Academic Conference on Computer Simulation and Information Technology. Changsha: Journal of Management, 2015: 275-282. | |
8 | YAO Y. Three-way decisions with probabilistic rough sets[J]. Information Sciences, 2010, 180(3): 341-353. |
9 | PAWLAK Z, SKOWRON A. Rudiments of rough sets[J]. Information Sciences, 2007, 177(1): 3-27. |
10 | YAO Y. Decision-theoretic rough set models[C]// Proceedings of the 2007 International Conference on Rough Sets and Knowledge Technology, LNCS 4481. Berlin: Springer, 2007: 1-12. |
11 | XU Y, NIU G. Research on multi-view clustering algorithm based on sequential three-way decision[J]. Applied Soft Computing, 2024, 158: No.111590. |
12 | 唐静昕.序贯多类三支决策模型研究[D].合肥:安徽大学,2020:31-69. |
TANG J X. Research on sequential multi-class three-way decision model[D]. Hefei: Anhui University, 2020: 31-69. | |
13 | 袁国鑫,于洪.一种基于邮件头信息的三支决策邮件过滤方法[J].计算机科学,2017,44(9):74-77,114. |
YUAN G X, YU H. Method of three-way decision spam filtering based on head information of E-mail[J]. Computer Science, 2017, 44(9): 74-77,114. | |
14 | 马新宇,黄春梅,姜春茂.基于三支决策的KNN渐进式文本分类方法[J].计算机应用研究,2023,40(4):1065-1069. |
MA X Y, HUANG C M, JIANG C M. KNN asymptotic text classification method based on three-way decision[J]. Application Research of Computers, 2023, 40(4): 1065-1069. | |
15 | 蒋浩英,钱进,王滔滔,等.基于三支决策的新型分类匿名模型[J].南京大学学报(自然科学),2023,59(6):970-980. |
JIANG H Y, QIAN J, WANG T T, et al. A novel classified anonymity model based on the three-way decisions[J]. Journal of Nanjing University (Natural Science), 2023, 59(6): 970-980. | |
16 | 张师鹏,李永忠,杜祥通.基于半监督学习和三支决策的入侵检测模型[J].计算机应用,2021,41(9):2602-2608. |
ZHANG S P, LI Y Z, DU X T. Intrusion detection model based on semi-supervised learning and three-way decision[J]. Journal of Computer Applications, 2021, 41(9): 2602-2608. | |
17 | 越凯强,李波,范盘龙.基于三支决策的飞机空战机动决策方法[J].计算机应用,2022,42(2):616-621. |
YUE K Q, LI B, FAN P L. Aircraft air combat maneuver decision method based on three-way decision[J]. Journal of Computer Applications, 2022, 42(2): 616-621. | |
18 | QIAN J, WANG T, JIANG H, et al. A TOPSIS method based on sequential three-way decision[J]. Applied Intelligence, 2023, 53(24): 30661-30676. |
19 | HWANG C L, YOON K. Methods for multiple attribute decision making[M]// Multiple attribute decision making: methods and applications a state-of-the-art survey, LNE 186. Berlin: Springer, 1981: 58-191. |
20 | CHEN S J, HWANG C L. Fuzy multiple attribute decision making methods [M]// Fuzzy multiple attribute decision making: methods and applications, LNE 375. Berlin: Springer, 1992: 289-486. |
21 | SALEHI V, ZAREI H, SHIRALI G A, et al. An entropy-based TOPSIS approach for analyzing and assessing crisis management systems in petrochemical industries[J]. Journal of Loss Prevention in the Process Industries, 2020, 67: No.104241. |
22 | NEOGI D. Performance appraisal of select nations in mitigation of COVID-19 pandemic using entropy based TOPSIS method[J]. Ciência and Saude Coletiva, 2021, 26(4): 1419-1428. |
23 | 丁文浩,胡明华,江斌.基于熵权法的平行跑道多模式进场效能分析[J].华东交通大学学报,2023,40(1):44-51. |
DING W H, HU M H, JIANG B. Multi-mode approach effectiveness analysis of parallel runways based on entropy weight method[J]. Journal of East China Jiaotong University, 2023, 40(1): 44-51. | |
24 | HE M, MA X, JIN Y. Station importance evaluation in dynamic bike-sharing rebalancing optimization using an entropy-based TOPSIS approach[J]. IEEE Access, 2021, 9: 38119-38131. |
25 | DEHGHAN RAHIMABADI P, BEHNIA M, NASABPOUR MOLAEI S, et al. Assessment of groundwater resources potential using Improved Water Quality Index (ImpWQI) and entropy-weighted TOPSIS model[J]. Sustainable Water Resources Management, 2024, 10: No.7. |
26 | KHAN H U, ABBAS M, ALRUWAILI O, et al. Selection of a smart and secure education school system based on the internet of things using entropy and TOPSIS approaches[J]. Computers in Human Behavior, 2024, 159: 108346. |
27 | DING S, LI R, GUO J. An entropy-based TOPSIS and optimized grey prediction model for spatiotemporal analysis in strategic emerging industry[J]. Expert Systems with Applications, 2023, 213(Pt C): No.119169. |
28 | HUANG W, SHUAI B, XU Y, et al. Railway express freight train service sites planning: a two-stage entropy-TOPSIS approach[J]. Transportmetrica A: Transport Science, 2019, 15(2): 807-823. |
29 | 贺晓宇.基于TOPSIS的科技项目评审专家信用评价模型研究[J].科技管理研究,2020,40(3):32-38. |
HE X Y. Research on a TOPSIS credit evaluation model of peer reviewers in science and technology projects[J]. Science and Technology Management Research, 2020, 40(3): 32-38. | |
30 | 张莹,王志浩.基于层次分析法的科技项目同行评议专家综合评价体系构建研究[J].昆明理工大学学报(社会科学版), 2021,21(5):88-96. |
ZHANG Y, WANG Z H. Research on the establishment of comprehensive evaluation system for peer review experts of science and technology projects based on the analytic hierarchy process[J]. Journal of Kunming University of Science and Technology (Social Sciences), 2021, 21(5): 88-96. |
[1] | Chunmao JIANG, Peng WU, Zhicong LI. Semi-supervised three-way clustering ensemble based on Seeds set and pairwise constraints [J]. Journal of Computer Applications, 2023, 43(5): 1481-1488. |
[2] | Yanhao SUN, Wei XU, Tao ZHANG, Ningxin LIU. Software quality evaluation method considering decision maker’s psychological behaviors [J]. Journal of Computer Applications, 2022, 42(8): 2528-2533. |
[3] | Kaiqiang YUE, Bo LI, Panlong FAN. Air combat maneuver decision method based on three-way decision [J]. Journal of Computer Applications, 2022, 42(2): 616-621. |
[4] | Guopeng ZHANG, Xuebin CHEN, Haoshi WANG, Ran ZHAI, Zheng MA. K-Prototypes clustering method for local differential privacy [J]. Journal of Computer Applications, 2022, 42(12): 3813-3821. |
[5] | ZHANG Shipeng, LI Yongzhong, DU Xiangtong. Intrusion detection model based on semi-supervised learning and three-way decision [J]. Journal of Computer Applications, 2021, 41(9): 2602-2608. |
[6] | YANG Ling, JIANG Chunmao. Strategy of energy-aware virtual machine migration based on three-way decision [J]. Journal of Computer Applications, 2021, 41(4): 990-998. |
[7] | REN Jie, MIN Fan, WANG Min. Cost-sensitive active learning through farthest distance sum sampling [J]. Journal of Computer Applications, 2019, 39(9): 2499-2504. |
[8] | XU Jianfeng, ZOU Weikang, LIANG Wei, CHENG Gaojie, ZHANG Yuanjian. Three-way screening method of basic clustering for ensemble clustering [J]. Journal of Computer Applications, 2019, 39(11): 3120-3126. |
[9] | WAN Zhichao, HU Feng, DENG Weibin. Feature selection method for imbalanced text sentiment classification based on three-way decisions [J]. Journal of Computer Applications, 2019, 39(11): 3127-3133. |
[10] | LI Shuai, WANG Guoyin, YANG Jie. Three-way group decisions model based on cloud aggregation [J]. Journal of Computer Applications, 2019, 39(11): 3163-3171. |
[11] | ZHAO Qingqing, HUANG Tianmin. Multi-objective decision making based on entropy weighted-Vague sets [J]. Journal of Computer Applications, 2018, 38(5): 1250-1253. |
[12] | WANG Zewu, SUN Lei, GUO Songhui, SUN Ruichen. Scheduling method of virtual cipher machine based on entropy weight evaluation in cryptography cloud [J]. Journal of Computer Applications, 2018, 38(5): 1353-1359. |
[13] | JIE Dan, HU Qiangqiang, XU Chengwu, GAO Baolu, LI Haifang. Edge quality evaluation based on fuzzy comprehensive evaluation [J]. Journal of Computer Applications, 2016, 36(9): 2580-2583. |
[14] | YU Hong, MAO Chuankai. Automatic three-way decision clustering algorithm based on k-means [J]. Journal of Computer Applications, 2016, 36(8): 2061-2065. |
[15] | XIONG Fang, ZHANG Xianyong. Regional attribute reduction and their structural heuristic algorithms for variable precision rough sets [J]. Journal of Computer Applications, 2016, 36(11): 2954-2957. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||