[1]RICHARDSON M, DOMINGOS P. Mining knowledge-sharing sites for viral marketing [C]// KDD '02: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2002: 61-70.
[2]KEMPE D, KLEINBERG J, TARDOS . Maximizing the spread of influence through a social network [C]// KDD'03: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2003: 137-146.
[3]FOWLER J H, CHRISTAKIS N A. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham heart study [J]. British Medical Journal, 2008, 337(a2338): 1-9.
[4]DUNBAR R. Neocortex size as a constraint on group size in primates [J]. Journal of Human Evolution, 1992, 22(6): 469-493.
[5]BACKSTROM L, HUNTTENLOCHER D, KLEINBERG J, et al.Group formation in large social networks: membership, growth, and evolution [C]// KDD '06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006: 44-54.
[6]MARLOW C, NAAMAN M, BOYD D, et al.HT06, tagging paper, taxonomy, Flickr, academic article, to read [C]// HYPERTEXT '06: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia. New York: ACM, 2006: 31-40.
[7]ANAGNOSTOPOULOS A, KUMAR R, MAHDIAN M. Influence and correlation in social networks [C]// KDD'08: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 7-15.
[8]ARAL S, MUCHNIK L, SUNDARARAJAN A. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21544-21549.
[9]LESKOVEC J, KRAUSE A, GUESTRIN C. Cost-effective outbreak detection in networks [C]// KDD'07: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007: 420-429.
[10]CHEN W, WANG Y, YANG S. Efficient influence maximization in social networks [C]// KDD'09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 199-208.
[11]CHA M, HADDADI H, BENEVENUTO F, et al.Measuring user influence in Twitter: the million follower fallacy [C]// ICWSM 2010: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. Menlo Park, California: AAAI Press, 2009: 11-13.
[12]TANG J, SUN J,WANG C. Social influence analysis in large-scale networks [C]// KDD'09:Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 807-816.
[13]GOYAL A, BONCHI F, LAKSHMANAN L V S. Learning influence probabilities in social networks [C]// WSDM '10: Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York: ACM, 2010: 241-250.
[14]GALSTYAN A, MUSOYAN V, COHEN P. Maximizing influence propagation in networks with community structure [J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2009, 79(5): 056102-7.
[15]CAO T, WU X, WANG S, et al.OASNET: an optimal allocation approach to influence maximization in modular social networks [C]// SAC'10: Proceedings of the 2010 ACM Symposium on Applied Computing. New York: ACM, 2010: 1088-1094.
[16]WANG Y, CONG G, SONG G, et al.Community-based greedy algorithm for mining top-K influential nodes in mobile social networks [C]// KDD'10: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 1039-1048. |