Journal of Computer Applications ›› 2014, Vol. 34 ›› Issue (9): 2552-2556.DOI: 10.11772/j.issn.1001-9081.2014.09.2552
• Artificial intelligence • Previous Articles Next Articles
WANG Jiquan,WANG Fulin
Received:
2014-04-09
Revised:
2014-06-18
Online:
2014-09-30
Published:
2014-09-01
Contact:
WANG Jiquan
王吉权,王福林
通讯作者:
王吉权
作者简介:
基金资助:
黑龙江省教育厅科学技术研究项目
CLC Number:
WANG Jiquan WANG Fulin. Improvement analysis and application of firefly algorithm[J]. Journal of Computer Applications, 2014, 34(9): 2552-2556.
王吉权 王福林. 萤火虫算法的改进分析及应用[J]. 计算机应用, 2014, 34(9): 2552-2556.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2014.09.2552
[1]YANG X-S. Nature-inspired metaheuristic algorithm [M]. Frome: Luniver Press, 2008: 81-96.
[2]ZHAO Y, YANG X-S, LIU L. Emerging meta-heuristic optimization method [M]. Beijing: Science Press, 2013:148-170. (赵玉新, Xin-She Yang, 刘利强. 新兴元启发式优化方法[M]. 北京:科学出版社, 2013: 148-170.)
[3]UCKASIK S, AK S. Firefly algorithm for continuous constrained optimization tasks [C]// ICCCI 2009: Proceedings of the First International Conference on Computational Collective Intelligence, Semantic Web, Social Networks and Multiagent Systems, LNCS 5796. Berlin: Springer, 2009: 97-100.
[4]HORNG M-H, LIOU R-J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm [J]. Expert Systems with Applications, 2011, 38(12): 14805-14811.
[5]HORNG M-H, JIANG T-W. The codebook design of image vector quantization based on the firefly algorithm [C]// ICCC1 2010: Proceedings of the Second International Conference on Computational Collective Intelligence, Technologies and Applications, LNCS 6423. Berlin: Springer, 2010: 438-447.
〖HJ1.5mm〗[6]YANG J, YE C. Novel firefly algorithm for solving Job-shop scheduling problem [J]. Computer Engineering and Applications, 2013, 49(11): 213-215,247. (杨娇,叶春明.应用新型萤火虫算法求解Job-shop调度问题[J].计算机工程与应用,203,49(11):213-215,247.)
[7]APOSTOLOPOULOS T, VLACHOS A. Application of the firefly algorithm for solving the economic emissions load dispatch problem [J]. International Journal of Combinatorics, 2011, 2011: Article ID 523806.
〖BP(〗http://www.hindawi.com/journals/ijcom/2011/523806/〖BP)〗
[8]SENTHILNATH J, OMKAR S N, MANI V. Clustering using firefly algorithm: performance study [J]. Swarm and Evolutionary Computation, 2011, 1(3): 164-171.
[9]HORNG M-H, LEE Y-X, LEEAND M-C, et al.Firefly meta-heuristic algorithm for training the radial basis function network for data classification and disease diagnosis [M]// Theory and New Applications of Swarm Intelligence. Rijeka: InTech, 2012: 115-132
[10]LIU C, YE C. Novel bioinspired swarm intelligence optimization algorithm: firefly algorithm [J]. Application Research of Computers, 2011, 28(9): 3295-3297. (刘长平,叶春明.一种新颖的仿生群智能优化算法:萤火虫算法[J].计算机应用研究,2011,28(9):3295-3297.)
[11]LIU P, LIU H, ZHENG X, et al.Approach for dynamic group automatic aggregation path planning based on improved FA [J]. Application Research of Computers, 2011, 28(11): 4146-4149. (刘鹏,刘弘,郑向伟,等.基于改进萤火虫算法的动态自动聚集路径规划方法[J].计算机应用研究,2011,28(11):4146-4149.)
[12]DONG J. Study on firefly algorithm and its application in path planning of underwater vehicles [D]. Harbin: Harbin Engineering University, 2012. (董静.萤火虫算法研究及其在水下潜器路径规划中的应用[D].哈尔滨:哈尔滨工程大学,2012.)
[13]FENG Y, LIU J, HE Y. Chaos-based dynamic population firefly algorithm [J]. Journal of Computer Applications, 2013, 33(3): 796-799, 805. (冯艳红, 刘建芹, 贺毅朝. 基于混沌理论的动态种群萤火虫算法[J]. 计算机应用,2013,33(3):796-799,805.)
[14]MO Y, MA Y, ZHENG Q. A cooperative firefly algorithm in cluster approach [J]. Control and Instrumetns in Chemical Industry, 2014, 41(3): 238-242. (莫愿斌,马彦追,郑巧燕.一种协作的萤火虫算法在聚类问题上的应用[J].化工自动化及仪表,2014,41(3):238-242.)
[15]WU D, DING X. T-S model identification based on improved firefly algorithm [J]. Computer Simulation, 2013, 30(3): 327-330. (吴东周,丁学明.基于改进萤火虫算法的T-S模型辨识[J].计算机仿真,2013,30(3):327-330.)
[16]〖CM(26*2〗GAO W. Study on the firefly algorithm and application [D]. Lanzhou: Lanzhou University, 2012. (高伟明. 萤火虫算法的研究与应用[D]. 兰州: 兰州大学, 2012.)
[17]WANG F, WU C, YANG H. Study on the productive method on the initial population by using genetic algorithms to solve the constrained optimization problems [J]. Journal of Northeast Agricultural University, 2004, 35(5): 608-611. (王福林,吴昌友,杨辉.用遗传算法求解约束优化问题初始种群的产生方法的探讨[J].东北农业大学学报,2004,35(5):608-611.) |
[1] | LYU Le, ZHANG Bohan, JING Junchang, LIU Dong. Multiple target nodes hiding method based on permanence [J]. Journal of Computer Applications, 0, (): 0-0. |
[2] | . Privacy preserving localization of surveillance images based on large vision models [J]. Journal of Computer Applications, 0, (): 0-0. |
[3] | . Federated class-incremental learning method with multi-head self-attention for label semantic embedding [J]. Journal of Computer Applications, 0, (): 0-0. |
[4] | Jianli DING, Hui HUANG, Weidong CAO. Dynamic monitoring method of flight chain operation status [J]. Journal of Computer Applications, 2024, 44(12): 3941-3948. |
[5] | Jingxin LIU, Wenjing HUANG, Liangsheng XU, Chong HUANG, Jiansheng WU. Unsupervised feature selection model with dictionary learning and sample correlation preservation [J]. Journal of Computer Applications, 2024, 44(12): 3766-3775. |
[6] | Yifei SONG, Yi LIU. Fast adversarial training method based on data augmentation and label noise [J]. Journal of Computer Applications, 2024, 44(12): 3798-3807. |
[7] | Yanran SHEN, Xin WEN, Jinhao ZHANG, Shuai ZHANG, Rui CAO, Baolu GAO. fMRI brain age prediction model with lightweight multi-scale convolutional network [J]. Journal of Computer Applications, 2024, 44(12): 3949-3957. |
[8] | Zucuan ZHANG, Xuebin CHEN, Rui GAO, Yuanhuai ZOU. Federated learning client selection method based on label classification [J]. Journal of Computer Applications, 2024, 44(12): 3759-3765. |
[9] | . Equivariant graph neural network-based simulator for lagrangian particle flow [J]. Journal of Computer Applications, 0, (): 0-0. |
[10] | . Multi-scale Information Fusion Time Series Long-term Forecasting Model Based on Neural Network [J]. Journal of Computer Applications, 0, (): 0-0. |
[11] | . Multi-target detection algorithm for traffic intersection images based on YOLOv9 [J]. Journal of Computer Applications, 0, (): 0-0. |
[12] | . Personalized learning recommendation in collaboration with knowledge graph and large language model [J]. Journal of Computer Applications, 0, (): 0-0. |
[13] | . Review of interpretable deep knowledge tracing methods [J]. Journal of Computer Applications, 0, (): 0-0. |
[14] | . Multi-scale Decorrelation Graph Convolutional Network [J]. Journal of Computer Applications, 0, (): 0-0. |
[15] | . Object detection uncertainty measurement scheme based on guide to the expression of uncertainty in measurement [J]. Journal of Computer Applications, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||