[1] WEINLAND D, RONFARD R, BOYER E. A survey of vision-based methods for action representation, segmentation and recognition [J]. Computer vision and image understanding, 2011, 115(2): 224-241. [2] NIEBLES J C, WANG H, LI F. Unsupervised learning of human action categories using spatial-temporal words [J]. International journal of computer vision, 2008, 79(3): 299-318. [3] LAPTEV I. On space-time interest points [J]. International journal of computer vision, 2005, 64(2/3): 107-123. [4] WANG H, KLASER A, SCHMID C, et al. Action recognition by dense trajectories [C]// CVPR 2011: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Washington, D.C.: IEEE Computer Society, 2011: 3169-3176. [5] OLSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature, 1996, 381(6583): 607-609. [6] OLSHAUSEN B A, FIELD D J. Sparse coding with an overcomplete basis set: a strategy employed by V1? [J]. Vision research, 1997, 37(23): 3311-3325. [7] LAPTEV I, MARSZALEK M, SCHMID C, et al. Learning realistic human actions from movies [C]// CVPR 2008: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Washington, D.C.: IEEE Computer Society, 2008: 1-8. [8] GERÓNIMO D, LÓPEZ A, PONSA D, et al. Haar wavelets and edge orientation histograms for on-board pedestrian detection [C]// IbPRIA'07: Proceedings of the 3rd Iberian Conference on Pattern Recognition and Image Analysis. Berlin: Springer, 2007: 418-425. [9] LOWE D G. Object recognition from local scale-invariant features [C]// Proceedings of the Seventh IEEE International Conference on Computer Vision. Piscataway, NJ: IEEE, 1999: 1150-1157. [10] BELONGIE S, MALIK J, PUZICHA J. Shape matching and object recognition using shape contexts [J]. IEEE transactions on pattern analysis and machine intelligence, 2002, 24(4): 509-522. [11] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]// CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, D.C.: IEEE Computer Society, 2005: 886-893. [12] ZHU G, XU C, GAO W, et al. Action recognition in broadcast tennis video using optical flow and support vector machine [C]// ECCV'06: Proceedings of the 2006 International Conference on Computer Vision in Human-Computer Interaction. Berlin: Springer, 2006: 89-98. [13] DALAL N, TRIGGS B, SCHMID C. Human detection using oriented histograms of flow and appearance [C]// ECCV'06: Proceedings of the 2006 International Conference on Computer Vision in Human-Computer Interaction. Berlin: Springer, 2006: 428-441. [14] FARNEBÄCK G. Two-frame motion estimation based on polynomial expansion [C]// Proceedings of the 13th Scandinavian Conference on Image Analysis. Berlin: Springer, 2003: 363-370. [15] SHI J, TOMASI C. Good features to track [C]// CVPR'94: Proceedings of the 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 1994: 593-600. [16] SCHULDT C, LAPTEV I, CAPUTO B. Recognizing human ac-tions: a local SVM approach [C]// ICPR 2004: Proceedings of the 17th International Conference on Pattern Recognition. Piscataway, NJ: IEEE, 2004: 32-36. [17] DELAITRE V, LAPTEV I, SIVIC J. Recognizing human actions in still images: a study of bag-of-features and part-based representations [C]// Proceedings of the 2010 British Machine Vision Conference. Durham: British Machine Vision Association, 2010, 97: 1-11. [18] LIU J, LUO J, SHAH M. Recognizing realistic actions from videos "in the wild" [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2009: 1996-2003. |