[1] CABRAL R, DE LA TORRE F, COSTEIRA J P, et al. Matrix completion for weakly-supervised multi-label Image classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(1):121-135. [2] HUANG Y, WU Z, WANG L, et al. Feature coding in image classification: a comprehensive study [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36(3):493-506. [3] SHAO L, LIU L, LI X. Feature learning for image classification via multiobjective genetic programming [J]. IEEE Transactions on Neural Networks and Learning Systems, 2014,25(7):1359-1371. [4] CHEN L. A fair comparison should be based on the same protocol—comments on "trainable convolution filters and their application to face recognition" [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36(3):622-623. [5] CAMPS-VALLS G, TUIA D, BRUZZONE L, et al. Advances in hyperspectral image classification: earth monitoring with statistical learning methods [J]. IEEE Signal Processing Magazine, 2014,31(1):45-54. [6] TORRIONE P A, MORTON K D, SAKAGUCHI R, et al. Histograms of oriented gradients for landmine detection in ground-penetrating radar data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(3):1539-1550. [7] LI W, CHEN C, SU H, et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(7):1-13. [8] CANDÉS E J, LI X, MA Y, et al. Robust principal component analysis? [J]. Journal of the ACM, 2011,58(3): Article No. 11. [9] SHU X, GAO Y, LU H. Efficient linear discriminant analysis with locality preserving for face recognition [J]. Pattern Recognition, 2012,45(5):1892-1898. [10] HUH S, FIENBERG S E. Discriminative topic modeling based on manifold learning [J]. ACM Transactions on Knowledge Discovery from Data, 2012,5(4):653-662. [11] SUN L, JI S, YE J. Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(1):194-200. [12] RUPNIK J, SHAWE-TAYLOR J. Multi-view canonical correlation analysis [EB/OL]. [2015-04-11]. http://ailab.ijs.si/dunja/SiKDD2010/Papers/Rupnik_Final.pdf. [13] YUAN Y H, SUN Q S. Discriminative learning of multiset integrated canonical correlation analysis for feature fusion [C]//Proceedings of the 2012 15th International Conference on Information Fusion. Piscataway, NJ: IEEE, 2012:882-887. [14] SHARMA A, KUMAR A, DAUME H, et al. Generalized multiview analysis: a discriminative latent space [C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2012:2160-2167. [15] KAN M, SHAN S, ZHANG H, et al. Multi-view discriminant analysis [M]//FITZGIBBON A, LAZEBNIK S, PERONA P, et al. Computer Vision—ECCV 2012, LNCS 7572. Berlin: Springer, 2012:808-821. [16] JING X Y, HU R M, WU F, et al. Uncorrelated multi-view discrimination dictionary learning for recognition [C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2014:2787-2795. |