[1] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. [2] HOYER P O. Non-negative matrix factorization with sparseness constraints[J]. Journal of Machine Learning Research, 2004, 5(1): 1457-1469. [3] SERHAT S. BUCAK, B GUNSEL. Incremental subspace learning via non-negative matrix factorization[J]. Pattern Recognition, 2009, 42(5): 788-797. [4] 王万良, 蔡竞. 稀疏约束下非负矩阵分解的增量学习算法[J]. 计算机科学, 2014, 41(8): 241-244.(WANG W L, CAI J. Incremental learning algorithm of non-negative matrix factorization with sparseness constraints[J]. Computer Science, 2014, 41(8): 241-244.) [5] LIU H, WU Z, LI X, et al. Constrained non-negative matrix factorization for image representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1299-1311. [6] CAI D, HE X, HAN J, et al. Graph regularized non-negative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1548-1560. [7] 姜伟, 李宏, 于震国,等. 稀疏约束图正则非负矩阵分解[J]. 计算机科学, 2013, 40(1): 218-256.(JIANG W, LI H, YU Z G, et al. Graph regularized non-negative matrix factorization with sparseness constraints[J]. Computer Science, 2013, 40(1): 218-256.) [8] 李乐, 章毓晋. 非负矩阵分解算法综述[J]. 电子学报, 2008, 36(4): 737-743.(LI L, ZHANG Y J. A survey on algorithms of non-negative matrix factorization[J]. Acta Electronica Sinica, 2008, 36(4): 737-743.) [9] 胡丽莹, 郭躬德, 马昌凤. 基于对称非负矩阵分解的重叠社区发现方法[J]. 计算机应用, 2015, 35(10): 2742-2746.(HU L Y, GUO G D, MA C F. Overlapping community discovery method based on symmetric nonnegative matrix factorization[J]. Journal of Computer Applications, 2015, 35(10): 2742-2746.) [10] 姜小燕. 基于基于非负矩阵分解的图像分类算法研究[D]. 锦州: 辽宁工业大学, 2016.(JIANG X Y. Research on image classification algorithm based on non-negative matrix factorization[D]. Jinzhou: Liaoning University of Technology, 2016.) [11] 汪金涛, 曹玉东, 王梓宁,等. 图像型垃圾邮件监控系统研究与设计[J]. 辽宁工业大学学报(自然科学版), 2016, 36(2): 78-81.(WANG J T, CAO Y D, WANG Z N, et al. Research and design of monitoring system on image spam[J]. Journal of Liaoning University of Technology (Natural Science Edition), 2016, 36(2): 78-81.) [12] 胡学考, 孙福明, 李豪杰. 基于稀疏约束的半监督非负矩阵分解算法[J]. 计算机科学, 2015, 42(7): 280-304.(HU X K, SUN F M. LI H J. Constrained nonnegative matrix factorization with sparseness for image representation[J]. Computer Science, 2015, 42(7): 280-304.) [13] 杜世强, 石玉清, 王维兰,等. 基于图正则化的半监督非负矩阵分解[J]. 计算机工程与应用, 2012, 48(36): 194-200.(DU S Q, SHI Y Q, WANG W L, et al. Graph-regularized-based semi-supervised non-negative matrix factorization[J]. Computer Engineering and Applications, 2012, 48(36): 194-200.) |