[1] GERS F A, ECK D, SCHMIDHUBER J. Applying LSTM to time series predictable through time-window approaches[C]//Proceedings of the 2001 International Conference on Artificial Neural Networks. London:Springer-Verlag, 2001:669-676. [2] WEN T, GASIC M, MRKSIC N, et al. Semantically conditioned LSTM-based natural language generation for spoken dialogue systems[EB/OL].[2018-03-20]. http://mi.eng.cam.ac.uk/research/dialogue/papers/wgms15.pdf. [3] TAN M, XIANG B, ZHOU B, et al. LSTM-based deep learning models for non-factoid answer selection[EB/OL].[2018-03-20]. http://cn.arxiv.org/pdf/1511.04108. [4] ZHU W, LAN C, XING J, et al. Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2016:3697-3703. [5] SOLTAU H, LIAO H, SAK H. Neural speech recognizer:acoustic-to-word LSTM model for large vocabulary speech recognition[EB/OL].[2018-03-20].https://www.isca-speech.org/archive/Interspeech_2017/pdfs/1566.PDF. [6] HAN J W. Investigation into the effectiveness of long short term memory networks for stock price prediction[EB/OL].[2018-03-20].https://pdfs.semanticscholar.org/5001/262bb497f5064b777c 41ac7a8999a2c0a5a6.pdf. [7] BAO W, YUE J, RAO Y. A deep learning framework for financial time series using stacked autoencoders and long-short term memory[J]. PloS One, 2017, 12(7):e0180944. [8] FISCHER T, KRAUSS C. Deep learning with long short-term memory networks for financial market predictions[J]. European Journal of Operational Research, 2017, 270(2):654-669. [9] SAINI S S, PARKHE O, KHADTARE T D, et al. Analysis of feedforward and recurrent neural network in forecasting foreign exchange rate[J]. Imperial Journal of Interdisciplinary Research, 2016, 2(6):822-826. [10] CUI Z, CHEN W, CHEN Y, et al. Multi-scale convolutional neural networks for time series classification[EB/OL].[2018-03-20].http://cn.arxiv.org/pdf/1603.06995. [11] ZANGENEH E, RAHMATI M, MOHSENZADEH Y. Low resolution face recognition using a two-branch deep convolutional neural network architecture[EB/OL].[2018-03-20].http://cn.arxiv.org/pdf/1706.06247. |