Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (8): 2235-2241.DOI: 10.11772/j.issn.1001-9081.2019010084
• Artificial intelligence • Previous Articles Next Articles
CHEN Hao, XIAO Lixue, LI Guang, PAN Yuekai, XIA Yu
Received:
2019-01-15
Revised:
2019-03-08
Online:
2019-04-15
Published:
2019-08-10
Supported by:
陈皓, 肖利雪, 李广, 潘跃凯, 夏雨
通讯作者:
陈皓
作者简介:
陈皓(1978-),男,河北安新人,副教授,博士,CCF会员,主要研究方向:进化计算、工程优化;肖利雪(1992-),女,内蒙古赤峰人,硕士研究生,主要研究方向:计算机智能、数据挖掘;李广(1995-),男,陕西铜川人,硕士研究生,主要研究方向:计算机智能、数据挖掘;潘跃凯(1995-),男,山东聊城人,硕士研究生,主要研究方向:计算机智能、数据挖掘;夏雨(1996-),女,陕西咸阳人,硕士研究生,主要研究方向:计算机智能、数据挖掘。
基金资助:
CLC Number:
CHEN Hao, XIAO Lixue, LI Guang, PAN Yuekai, XIA Yu. Aggressive behavior recognition based on human joint point data[J]. Journal of Computer Applications, 2019, 39(8): 2235-2241.
陈皓, 肖利雪, 李广, 潘跃凯, 夏雨. 基于人体关节点数据的攻击性行为识别[J]. 计算机应用, 2019, 39(8): 2235-2241.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2019010084
[1] SCHWAPPACH D, SENDLHOFER G, HÄSLER L, et al. Speaking up behaviors and safety climate in an Austrian university hospital[J]. International Journal for Quality in Health Care, 2018, 30(9):701-707. [2] YU S, CHEN H, BROWN R A. Hidden Markov model-based fall detection with motion sensor orientation calibration:a case for real-life home monitoring[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(6):1847-1853. [3] RABIEE H, MOUSAVI H, NABI M, et al. Detection and localization of crowd behavior using a novel tracklet-based model[J]. International Journal of Machine Learning and Cybernetics, 2017, 9(12), 1999-2010. [4] LU X D, KOGA T. Real-time motion detection for high-assurance aircraft tracking system using downlink aircraft parameters[J]. Simulation Modelling Practice and Theory, 2016, 65:81-92. [5] STONE E E, SKUBIC M. Fall detection in homes of older adults using the Microsoft Kinect[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(1):290-301. [6] CHANG X, MA Z, LIN M, et al. Feature interaction augmented sparse learning for fast Kinect motion detection[J]. IEEE Transactions on Image Processing, 2017, 26(8):3911-3920. [7] OUANANE A, SERIR A. New paradigm for recognition of aggressive human behavior based on bag-of-features and skeleton graph[C]//Proceedings of the 8th International Workshop on Systems, Signal Processing and Their Applications. Piscataway, NJ:IEEE, 2013:133-138. [8] SERRANO I, DENIZ O, BUENO G, et al. Spatio-temporal elastic cuboid trajectories for efficient fight recognition using Hough forests[J]. Machine Vision & Applications, 2018, 29(2):207-217. [9] CAO Z, SIMON T, WEI S. et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:1302-1310. [10] MERAD D, AZIZ K, IGUERNAISSI R, et al. Tracking multiple persons under partial and global occlusions:application to customers' behavior analysis[J]. Pattern Recognition Letters, 2016, 81:11-20. [11] RAZARI-FAR R, CHAKRABARTI S, SAIF M, et al. An integrated imputation-prediction scheme for prognostics of battery data with missing observations[J]. Expert Systems with Applications, 2016, 115:709-723. [12] 史慧.谈谈人际交往中的空间距离[J].河南水利与南水北调,2007(7):73-74. (SHI H, Talking about the spatial distance in interpersonal communication[J]. Henan Water Resources and South-to-North Water Diversion, 2007(7):73-74.) [13] 费章惠.中国大百科全书:力学[M].北京:中国大百科全书出版社,1987:133. (FEI Z H. Encyclopedia of China:Mechanics[M]. Beijing:Encyclopedia of China Publishing House, 1987:133.) [14] MA X, SHA J, WANG D, et al. Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning[J]. Electronic Commerce Research and Applications, 2018, 31:24-39. [15] CHEN W, FU K, ZUO J, et al. Radar emitter classification for large data set based on weighted-XGboost[J]. IET Radar, Sonar & Navigation, 2017, 11(8):1203-1207. [16] SENER F, IKIZLER-CINBIS N. Two-person interaction recognition via spatial multiple instance embedding[J]. Journal of Visual Communication & Image Representation, 2015, 32:63-73. [17] ZHANG B, ROTA P, CONCI N, et al. Human interaction recognition in the wild:analyzing trajectory clustering from multiple-instance-learning perspective[C]//Proceedings of the 2015 IEEE International Conference on Multimedia and Expo. Piscataway, NJ:IEEE, 2015:1-6. [18] KONG Y, LIANG W, DONG Z, et al. Recognising human interaction from videos by a discriminative model[J]. IET Computer Vision, 2014, 8(4):277-286. [19] KONG Y, FU Y. Modeling supporting regions for close human interaction recognition[C]//Proceedings of the 2014 European Conference on Computer Vision, LNCS 8926. Berlin:Springer, 2014:29-44. [20] NGUYEN N, YOSHITAKA A. Human interaction recognition using independent subspace analysis algorithm[C]//Proceedings of the 2014 IEEE International Symposium on Multimedia.Piscataway, NJ:IEEE, 2014:40-46. [21] el houda SLIMANI K N, BENEZETH Y, SOUAMI F. Human interaction recognition based on the co-occurrence of visual words[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ:IEEE, 2014:461-466. [22] 王佩瑶,曹江涛,姬晓飞.基于改进时空兴趣点特征的双人交互行为识别[J].计算机应用,2016, 36(10):2875-2879. (WANG P Y, CAO J T, JI X F. Two-person interactive behavior recognition based on improved spatio-temporal interest points[J]. Journal of Computer Applications, 2016, 36(10):2875-2879.) [23] 姬晓飞,左鑫孟.基于分阶段视觉共生矩阵序列的双人交互识别[J].计算机工程与设计,2017,38(9).2498-2503. (JI X F, ZUO X M. Human interaction recognition based on multi-stag framework and co-occurring visual matrix sequence[J]. Computer Engineering and Design, 2017, 38(9):2498-2503.) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||