About author:ZHAO Xujian,born in 1984,Ph. D.,associate professor. His research interests include text mining,natural language processing,Web information processing WANG Chongwei,born in 1995,M. S. candidate. His research interests include information extraction,machine learning.
Supported by:
the Humanities and Social Sciences Foundation of the Ministry of Education(17YJCZH260);the Key Project of Science and Technology Department of Sichuan Province(2020YFS0057);the CERNET Innovation Project(NGII20180403)
LIU B, HAN F X, NIU D, et al. Story forest: extracting events and telling stories from breaking news [J]. ACM Transactions on Knowledge Discovery from Data, 2020, 14(3): Article No.31. 10.1145/3377939
2
HUANG D P, HU S Y, CAI Y, et al. Discovering event evolution graphs based on news articles relationships [C]// Proceedings of the 2014 IEEE 11th International Conference on e-Business Engineering. Piscataway: IEEE, 2014: 246-251. 10.1109/icebe.2014.49
3
ZHOU P P, WU B, CAO Z. EMMBTT: a novel event evolution model based on TFxIEF and TDC in tracking news streams [C]// Proceedings of the 2017 IEEE 2nd International Conference on Data Science in Cyberspace. Piscataway: IEEE, 2017: 102-107. 10.1109/dsc.2017.53
LI Y Y, MA S, JIANG H Y, et al. An approach for storytelling by correlating events from social networks [J]. Journal of Computer Research and Development, 2018, 55(9): 1972-1986. 10.7544/issn1000-1239.2018.20180155
5
YUAN R F, ZHOU Q F, ZHOU W B. dTexSL: a dynamic disaster textual storyline generating framework [J]. World Wide Web, 2019, 22(5): 1913-1933. 10.1007/s11280-018-0640-8
6
HAWWASH B, NASRAOUI O. From Tweets to Stories: using Stream-Dashboard to weave the Twitter data stream into dynamic cluster models [C]// Proceedings of the 2014 3rd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications. New York: ACM, 2014: 182-197. 10.18297/etd/587
7
HUA T, ZHANG X C, WANG W, et al. Automatical storyline generation with help from Twitter [C]// Proceedings of the 25th ACM International Conference on Information and Knowledge Management. New York: ACM, 2016: 2383-2388. 10.1145/2983323.2983698
8
MAKKONEN J. Investigations on event evolution on TDT [C]// Proceedings of the HLT-NAACL 2003 Student Research Workshop. Stroudsburg: ACL, 2003: 43-48. 10.3115/1073416.1073424
9
NALLAPATI R, FENG A, PENG F C, et al. Event threading within news topics [C]// Proceedings of the 2004 13th ACM International Conference on Information and Knowledge Management. New York: ACM, 2004: 446-453. 10.1145/1031171.1031258
10
LABAN P, HEARST M A. newsLens: building and visualizing long-ranging news stories [C]// Proceedings of the 2017 Events and Stories in the News Workshop. Stroudsburg: ACL, 2017: 1-9. 10.18653/v1/w17-2701
11
佘玉轩,熊赟.基于贝叶斯网络的故事线挖掘算法[J].计算机工程,2018,44(3):55-59.(SHE Y X, XIONG Y. Storyline mining algorithm based on Bayesian network [J]. Computer Engineering, 2018, 2018, 44(3): 55-59.). 10.3969/j.issn.1000-3428.2018.03.009
12
ZHOU D Y, XU H Y, DAI X Y, et al. Unsupervised storyline extraction from news articles [C]// Proceedings of the 2016 25th International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 3014-3020.
13
WANG D D, LI T, OGIHARA M. Generating pictorial storylines via minimum-weight connected dominating set approximation in multi-view graphs [C]// Proceedings of the 2012 26th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2012: 683-689. 5074
14
CAI H Y, HUANG Z, SRIVASTAVA D, et al. Indexing evolving events from tweet streams [J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(11): 3001-3015. 10.1109/tkde.2015.2445773
15
LIN C, LIN C, LI J X, et al. Generating event storylines from microblogs [C]// Proceedings of the 2012 21st ACM International Conference on Information and Knowledge Management. New York: ACM, 2012: 175-184. 10.1145/2396761.2396787
LI P, WENG W, LIN C. Method for generating microblogs storylines [J]. Journal of Chinese Information Processing, 2016, 30(3): 143-151. 10.1007/978-3-319-41003-6_9
17
WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. 10.1109/tnnls.2020.2978386
18
CHEN C C, CHEN Y T, CHEN M C. An aging theory for event life-cycle modeling [J]. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, 2007, 37(2): 237-248. 10.1109/tsmca.2006.886370
19
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2020-10-10]. .