[1] 杨其全, 邹定强, 胡杰. 对UIC 712:2002《钢轨伤损》 的修订建议[J]. 铁道技术监督,2017,45(3):1-5.(YANG Q Q,ZOU D Q, HU J. Suggestions for revision of UIC 712:2002 "Rail Defect"[J]. Railway Quality Control,2017,45(3):1-5.) [2] PENG J,TIAN G Y,WANG L,et al. Investigation into eddy current pulsed thermography for rolling contact fatigue detection and characterization[J]. NDT & E International,2015,74:72-80. [3] KANG D,OH J T,KIM J W,et al. Study on MFL technology for defect detection of railroad track under speed-up condition[J]. Journal of the Korean Society for Railway,2015,18(5):401-409. [4] ROSE J L,AVIOLI M J,MUDGE P,et al. Guided wave inspection potential of defects in rail[J]. NDT & E International,2004,37(2):153-161. [5] KOSTRYZHEV A G,DAVIS C L,ROBERTS C. Detection of crack growth in rail steel using acoustic emission[J]. Ironmaking and Steelmaking,2013,40(2):98-102. [6] REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:779-788. [7] REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6517-6525. [8] REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2019-12-15]. https://arxiv.org/pdf/1804.02767.pdf. [9] BOCHKOVSKIY A, WANG C Y,LIAO H Y M. YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2020-04-23]. https://arxiv.org/pdf/2004.10934.pdf. [10] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multiBox detector[C]//Proceeding of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [11] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:580-587. [12] GIRSHICK R. Fast R-CNN[C]//Proceeding of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1440-1448. [13] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [14] HE K,ZHANG X,REN S,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015, 37(9):1904-1916. [15] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceeding of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:936-944. [16] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:658-666. [17] WANG J,CHEN K,YANG S,et al. Region proposal by guided anchoring[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:2960-2969. [18] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [19] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327 [20] GAN J,LI Q,WANG J,et al. A hierarchical extractor-based visual rail surface inspection system[J]. IEEE Sensors Journal, 2017,17(23):7935-7944. |