Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (1): 325-332.DOI: 10.11772/j.issn.1001-9081.2021071218
• Frontier and comprehensive applications • Previous Articles
Runze WANG1, Yueqin ZHANG1(), Qiqi QIN1, Zehua ZHANG1, Xumin GUO2
Received:
2021-07-14
Revised:
2021-08-16
Accepted:
2021-08-23
Online:
2021-08-16
Published:
2022-01-10
Contact:
Yueqin ZHANG
About author:
WANG Runze, born in 1997, M. S. candidate. His research interests include graph representation learning, biometric identification.Supported by:
王润泽1, 张月琴1(), 秦琪琦1, 张泽华1, 郭旭敏2
通讯作者:
张月琴
作者简介:
王润泽(1997—),男,山东德州人,硕士研究生,CCF会员,主要研究方向:图表示学习、生物特征识别基金资助:
CLC Number:
Runze WANG, Yueqin ZHANG, Qiqi QIN, Zehua ZHANG, Xumin GUO. Multi-aspect multi-attention fusion of molecular features for drug-target affinity prediction[J]. Journal of Computer Applications, 2022, 42(1): 325-332.
王润泽, 张月琴, 秦琪琦, 张泽华, 郭旭敏. 多视角多注意力融合分子特征的药物-靶标亲和力预测[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 325-332.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071218
数据集 | Num Compounds | Num Targets | Num Pairs |
---|---|---|---|
Davis | 68 | 422 | 30 056 |
KIBA | 2 111 | 229 | 118 254 |
Tab. 1 Statistics of experimental datasets
数据集 | Num Compounds | Num Targets | Num Pairs |
---|---|---|---|
Davis | 68 | 422 | 30 056 |
KIBA | 2 111 | 229 | 118 254 |
1 | BAGHERIAN M, SABETI E, WANG K, et al. Machine learning approaches and databases for prediction of drug-target interaction: a survey paper[J]. Briefings in Bioinformatics, 2021, 22(1): 247-269. 10.1093/bib/bbz157 |
2 | LU S, YE Q Z, SINGH D, et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein[J]. Nature Communications, 2021, 12: No.502. 10.1101/2020.07.30.228023 |
3 | POLAND G A. Tortoises, hares, and vaccines: a cautionary note for SARS-CoV-2 vaccine development[J]. Vaccine, 2020, 38(27): 4219-4220. 10.1016/j.vaccine.2020.04.073 |
4 | BOLTON E E, WANG Y L, THIESSEN P A, et al. PubChem: integrated platform of small molecules and biological activities[M]// WHEELER R A, SPELLMEYER D C. Annual Reports in Computational Chemistry, Volume 4. New York: Elsevier Science, 2008: 217-241. |
5 | NOBLE M E M, ENDICOTT J A, JOHNSON L N. Protein kinase inhibitors: insights into drug design from structure[J]. Science, 2004, 303(5665): 1800-1805. 10.1126/science.1095920 |
6 | LIN X. DeepGS: deep representation learning of graphs and sequences for drug-target binding affinity prediction[EB/OL]. (2020-04-03) [2021-02-20].. 10.1093/bib/bbab117 |
7 | 徐冰冰,岑科廷,黄俊杰,等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5):755-780. 10.11897/SP.J.1016.2020.00755 |
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5):755-780. 10.11897/SP.J.1016.2020.00755 | |
8 | TROTT O, OLSON A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. Journal of Computational Chemistry, 2010, 31(2): 455-461. |
9 | PERLMAN L, GOTTLIEB A, ATIAS N, et al. Combining drug and gene similarity measures for drug-target elucidation[J]. Journal of Computational Biology, 2011, 18(2): 133-145. 10.1089/cmb.2010.0213 |
10 | WANG M H, TANG C, CHEN J J. Drug-target interaction prediction via dual Laplacian graph regularized matrix completion[J]. BioMed Research International, 2018, 2018: No.1425608. 10.1155/2018/1425608 |
11 | HE T, HEIDEMEYER M, BAN F Q, et al. SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines[J]. Journal of Cheminformatics, 2017, 9: No.24. 10.1186/s13321-017-0209-z |
12 | GAWEHN E, HISS J A, SCHNEIDER G. Deep learning in drug discovery[J]. Molecular Informatics, 2016, 35(1): 3-14. 10.1002/minf.201501008 |
13 | SCHÜTT K T, ARBABZADAH F, CHMIELA S, et al. Quantum-chemical insights from deep tensor neural networks[J]. Nature Communications, 2017, 8: No.13890. 10.1038/ncomms13890 |
14 | CALLAWAY E. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures[J]. Nature, 2020, 588(7837): 203-204. 10.1038/d41586-020-03348-4 |
15 | WEN M, ZHANG Z M, NIU S Y, et al. Deep-learning-based drug-target interaction prediction[J]. Journal of Proteome Research, 2017, 16(4): 1401-1409. 10.1021/acs.jproteome.6b00618 |
16 | ÖZTÜRK H, ÖZGÜR A, OZKIRIMLI E. DeepDTA: deep drug-target binding affinity prediction[J]. Bioinformatics, 2018, 34(17): i821-i829. 10.1093/bioinformatics/bty593 |
17 | KARIMI M, WU D, WANG Z Y, et al. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks[J]. Bioinformatics, 2019, 35(18): 3329-3338. 10.1093/bioinformatics/btz111 |
18 | JIMÉNEZ-LUNA J, GRISONI F, SCHNEIDER G. Drug discovery with explainable artificial intelligence[J]. Nature Machine Intelligence, 2020, 2(10): 573-584. 10.1038/s42256-020-00236-4 |
19 | GAO K Y K, FOKOUE A, LUO H, et al. Interpretable drug target prediction using deep neural representation[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. [S.l.]: ijcai.org, 2018: 3371-3377. 10.24963/ijcai.2018/468 |
20 | NGUYEN T, LE H, QUINN T P, et al. GraphDTA: predicting drug-target binding affinity with graph neural networks[J]. Bioinformatics, 2021, 37(8): 1140-1147. 10.1093/bioinformatics/btaa921 |
21 | LI S Y, WAN F P, SHU H T, et al. MONN: a multi-objective neural network for predicting compound-protein interactions and affinities[J]. Cell Systems, 2020, 10(4): 308-322.e11. 10.1016/j.cels.2020.03.002 |
22 | ISHIGURO K, MAEDA S I, KOYAMA M. Graph warp module: an auxiliary module for boosting the power of graph neural networks in molecular graph analysis[EB/OL]. (2019-05-24) [2021-01-03].. |
23 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2020-03-20].. |
24 | DAVIS M I, HUNT J P, HERRGARD S, et al. Comprehensive analysis of kinase inhibitor selectivity[J]. Nature Biotechnology, 2011, 29(11): 1046-1051. 10.1038/nbt.1990 |
25 | TANG J, SZWAJDA A, SHAKYAWAR S, et al. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis[J]. Journal of Chemical Information and Modeling, 2014, 54(3): 735-743. 10.1021/ci400709d |
26 | ROY K, CHAKRABORTY P, MITRA I, et al. Some case studies on application of “rm2” metrics for judging quality of quantitative structure-activity relationship predictions: emphasis on scaling of response data[J]. Journal of Computational Chemistry, 2013, 34(12): 1071-1082. 10.1002/jcc.23231 |
27 | ZHAO Q C, XIAO F, YANG M Y, et al. AttentionDTA: prediction of drug-target binding affinity using attention model[C]// Proceedings of 2019 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2019: 64-69. 10.1109/bibm47256.2019.8983125 |
28 | ZHAO L L, WANG J J, PANG L, et al. GANsDTA: predicting drug-target binding affinity using GANs[J]. Frontiers in Genetics, 2020, 10: No.1243. 10.3389/fgene.2019.01243 |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[10] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Xiaolu WANG, Wangfei QIAN. Gait recognition method based on two-branch convolutional network [J]. Journal of Computer Applications, 2024, 44(6): 1965-1971. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||