Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (11): 3625-3631.DOI: 10.11772/j.issn.1001-9081.2022101619
Special Issue: 前沿与综合应用
• Frontier and comprehensive applications • Previous Articles Next Articles
Bo YANG, Zongtao DUAN(), Pengfei ZUO, Yuanyuan XIAO, Yilin WANG
Received:
2022-10-28
Revised:
2023-04-05
Accepted:
2023-08-07
Online:
2023-05-24
Published:
2023-11-10
Contact:
Zongtao DUAN
About author:
YANG Bo, born in 1999, M. S. candidate. His research interests include big data, deep learning.Supported by:
通讯作者:
段宗涛
作者简介:
杨博(1999—),男,山西运城人,硕士研究生,CCF会员,主要研究方向:大数据、深度学习基金资助:
CLC Number:
Bo YANG, Zongtao DUAN, Pengfei ZUO, Yuanyuan XIAO, Yilin WANG. Accident prediction model fusing heterogeneous traffic situations[J]. Journal of Computer Applications, 2023, 43(11): 3625-3631.
杨博, 段宗涛, 左鹏飞, 肖媛媛, 王艺霖. 融合异构交通态势的事故预测模型[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3625-3631.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022101619
城市 | 网格 大小 | 事故 时段数 | 非事故 时段数 | 交通 事件数 | POI数 |
---|---|---|---|---|---|
Atlanta | 9×8 | 2 446 | 147 698 | 43 228 | 16 393 |
Austin | 12×13 | 4 055 | 282 985 | 46 822 | 21 745 |
Charlotte | 11×12 | 4 945 | 246 800 | 52 988 | 18 718 |
Dallas | 15×13 | 3 252 | 358 860 | 70 843 | 39 041 |
Houston | 19×15 | 5 581 | 544 211 | 87 929 | 60 808 |
Tab. 1 Dataset details
城市 | 网格 大小 | 事故 时段数 | 非事故 时段数 | 交通 事件数 | POI数 |
---|---|---|---|---|---|
Atlanta | 9×8 | 2 446 | 147 698 | 43 228 | 16 393 |
Austin | 12×13 | 4 055 | 282 985 | 46 822 | 21 745 |
Charlotte | 11×12 | 4 945 | 246 800 | 52 988 | 18 718 |
Dallas | 15×13 | 3 252 | 358 860 | 70 843 | 39 041 |
Houston | 19×15 | 5 581 | 544 211 | 87 929 | 60 808 |
模型 | Atlanta | Austin | Charlote | Dallas | Houston | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | Non-Acc | Avg-Acc | Acc | Non-Acc | Avg-Acc | Acc | Non-Acc | Avg-Acc | Acc | Non-Acc | Avg-Acc | Acc | Non-Acc | Avg-Acc | |
LR | 0.77 | 0.77 | 0.77 | 0.79 | 0.83 | 0.81 | 0.76 | 0.78 | 0.77 | 0.67 | 0.81 | 0.76 | 0.76 | 0.85 | 0.82 |
RF | 0.77 | 0.77 | 0.77 | 0.80 | 0.84 | 0.82 | 0.79 | 0.77 | 0.78 | 0.63 | 0.85 | 0.78 | 0.73 | 0.86 | 0.81 |
FNN | 0.76 | 0.77 | 0.76 | 0.79 | 0.83 | 0.81 | 0.78 | 0.79 | 0.79 | 0.65 | 0.84 | 0.78 | 0.76 | 0.86 | 0.82 |
SSAG | 0.81 | 0.75 | 0.78 | 0.79 | 0.79 | 0.79 | 0.81 | 0.75 | 0.78 | 0.69 | 0.82 | 0.78 | 0.78 | 0.85 | 0.82 |
AP-FHTS | 0.85 | 0.81 | 0.83 | 0.86 | 0.86 | 0.86 | 0.87 | 0.84 | 0.86 | 0.84 | 0.91 | 0.89 | 0.86 | 0.90 | 0.89 |
Tab. 2 Performance comparison of different models on five city datasets
模型 | Atlanta | Austin | Charlote | Dallas | Houston | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | Non-Acc | Avg-Acc | Acc | Non-Acc | Avg-Acc | Acc | Non-Acc | Avg-Acc | Acc | Non-Acc | Avg-Acc | Acc | Non-Acc | Avg-Acc | |
LR | 0.77 | 0.77 | 0.77 | 0.79 | 0.83 | 0.81 | 0.76 | 0.78 | 0.77 | 0.67 | 0.81 | 0.76 | 0.76 | 0.85 | 0.82 |
RF | 0.77 | 0.77 | 0.77 | 0.80 | 0.84 | 0.82 | 0.79 | 0.77 | 0.78 | 0.63 | 0.85 | 0.78 | 0.73 | 0.86 | 0.81 |
FNN | 0.76 | 0.77 | 0.76 | 0.79 | 0.83 | 0.81 | 0.78 | 0.79 | 0.79 | 0.65 | 0.84 | 0.78 | 0.76 | 0.86 | 0.82 |
SSAG | 0.81 | 0.75 | 0.78 | 0.79 | 0.79 | 0.79 | 0.81 | 0.75 | 0.78 | 0.69 | 0.82 | 0.78 | 0.78 | 0.85 | 0.82 |
AP-FHTS | 0.85 | 0.81 | 0.83 | 0.86 | 0.86 | 0.86 | 0.87 | 0.84 | 0.86 | 0.84 | 0.91 | 0.89 | 0.86 | 0.90 | 0.89 |
1 | SILVA P B, ANDRADE M, FERREIRA S. Machine learning applied to road safety modeling: a systematic literature review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(6): 775-790. 10.1016/j.jtte.2020.07.004 |
2 | REN H, SONG Y, WANG J, et al. A deep learning approach to the citywide traffic accident risk prediction[C]// Proceedings of the 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2018:3346-3351. 10.1109/itsc.2018.8569437 |
3 | ZIAKOPOULOS A, YANNIS G. A review of spatial approaches in road safety[J]. Accident Analysis and Prevention, 2020, 135: No.105323. 10.1016/j.aap.2019.105323 |
4 | JIANG W, LUO J. Graph neural network for traffic forecasting: a survey[J]. Expert Systems with Applications, 2022, 207: No.117921. 10.1016/j.eswa.2022.117921 |
5 | HAMAMI M AL, MATISZIW T C. Measuring the spatiotemporal evolution of accident hot spots[J]. Accident Analysis and Prevention, 2021, 157: No.106133. 10.1016/j.aap.2021.106133 |
6 | YU H, YUAN R, LI Z, et al. Identifying heterogeneous factors for driver injury severity variations in snow-related rural single-vehicle crashes[J]. Accident Analysis and Prevention, 2020, 144: No.105587. 10.1016/j.aap.2020.105587 |
7 | ABELLÁN J, LÓPEZ G, DE OÑA J. Analysis of traffic accident severity using Decision Rules via Decision Trees[J]. Expert Systems with Applications, 2013, 40(15): 6047-6054. 10.1016/j.eswa.2013.05.027 |
8 | ALOGAILI A, MANNERING F. Unobserved heterogeneity and the effects of driver nationality on crash injury severities in Saudi Arabia[J]. Accident Analysis and Prevention, 2020, 144: No.105618. 10.1016/j.aap.2020.105618 |
9 | CHANG L Y, CHEN W C. Data mining of tree-based models to analyze freeway accident frequency[J]. Journal of Safety Research, 2005, 36(4): 365-375. 10.1016/j.jsr.2005.06.013 |
10 | LV Y, TANG S, ZHAO H. Real-Time highway traffic accident prediction based on the k-nearest neighbor method[C]// Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation. Piscataway: IEEE, 2009: 547-550. 10.1109/icmtma.2009.657 |
11 | TEDJOPURNOMO D A, BAO Z, ZHENG B, et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(4): 1544-1561. |
12 | MOOSAVI S, SAMAVATIAN M H, PARTHASARATHY S, et al. Accident risk prediction based on heterogeneous sparse data: new dataset and insights[C]// Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2019:33-42. 10.1145/3347146.3359078 |
13 | YUAN Z, ZHOU X, YANG T. Hetero-ConvLSTM: a deep learning approach to traffic accident prediction on heterogeneous spatio-temporal data[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 984-992. 10.1145/3219819.3219922 |
14 | HAMILTON W. 图表示学习[M]. AI TIME,译. 北京:电子工业出版社, 2021: 72-113. 10.1007/978-3-031-01588-5_9 |
HAMILTON W. Graph Representation Learning[M]. AI TIME, translated. Beijing: Publishing House of Electronics Industry, 2021: 72-113. 10.1007/978-3-031-01588-5_9 | |
15 | ZHOU Z, WANG Y, XIE X, et al. RiskOracle: a minute-level citywide traffic accident forecasting framework[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 1258-1265. 10.1609/aaai.v34i01.5480 |
16 | YU L, DU B, HU X, et al. Deep spatio-temporal graph convolutional network for traffic accident prediction[J]. Neurocomputing, 2021, 423: 135-147. 10.1016/j.neucom.2020.09.043 |
17 | CHEN Q, SONG X, YAMADA H S, et al. Learning deep representation from big and heterogeneous data for traffic accident inference[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016:338-344. 10.1609/aaai.v30i1.10011 |
18 | YUAN Z, ZHOU X, YANG T, et al. Predicting traffic accidents through heterogeneous urban data: a case study[C]// Proceedings of the 6th International Workshop on Urban Computing. New York: ACM, 2017:1-9. |
19 | LOBO A, FERREIRA S, IGLESIAS I, et al. Urban road crashes and weather conditions: untangling the effects[J]. Sustainability, 2019, 11(11): No.3176. 10.3390/su11113176 |
20 | MALIN F, NORROS I, INNAMAA S. Accident risk of road and weather conditions on different road types[J]. Accident Analysis and Prevention, 2019, 122: 181-188. 10.1016/j.aap.2018.10.014 |
21 | ROLAND J, WAY P D, FIRAT C, et al. Modeling and predicting vehicle accident occurrence in Chattanooga, Tennessee[J]. Accident Analysis and Prevention, 2021, 149: No.105860. 10.1016/j.aap.2020.105860 |
22 | TAN P N, STEINBACH M, KUMAR V. 数据挖掘导论(完整版)[M]. 范明,范宏建,译.北京:人民邮电出版社, 2011: 180-186. |
TAN P N, STEINBACH M, KUMAR V. Introduction to Data Mining[M]. FAN M, FAN H J, translated. Beijing: Posts and Telecom Press, 2011: 180-186. | |
23 | WALKER S H, DUNCAN D B. Estimation of the probability of an event as a function of several independent variables[J]. Biometrika, 1967, 54(1/2): 167-179. 10.1093/biomet/54.1-2.167 |
24 | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. 10.1023/a:1010933404324 |
25 | PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[5] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[9] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[11] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[12] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[15] | Yaxing BING, Yangping WANG, Jiu YONG, Haomou BAI. Six degrees of freedom object pose estimation algorithm based on filter learning network [J]. Journal of Computer Applications, 2024, 44(6): 1920-1926. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||