Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (12): 3689-3696.DOI: 10.11772/j.issn.1001-9081.2022121812
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Xuanyu SUN1, Yancui SHI1,2()
Received:
2022-12-07
Revised:
2023-03-05
Accepted:
2023-03-07
Online:
2023-12-11
Published:
2023-12-10
Contact:
Yancui SHI
About author:
SUN Xuanyu, born in 1998, M. S. candidate. His research interests include deep learning, recommender system.
Supported by:
通讯作者:
史艳翠
作者简介:
孙轩宇(1998—),男,江苏南京人,硕士研究生,CCF会员,主要研究方向:深度学习、推荐系统;
基金资助:
CLC Number:
Xuanyu SUN, Yancui SHI. Session-based recommendation model by graph neural network fused with item influence[J]. Journal of Computer Applications, 2023, 43(12): 3689-3696.
孙轩宇, 史艳翠. 融合项目影响力的图神经网络会话推荐模型[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3689-3696.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022121812
数据集 | 点击数 | 会话数 | 项目数 | 平均长度 |
---|---|---|---|---|
Diginetica | 981 620 | 777 029 | 42 596 | 4.80 |
Gowalla | 1 122 788 | 830 893 | 29 510 | 3.85 |
Tab. 1 Statistical information of experiment datasets
数据集 | 点击数 | 会话数 | 项目数 | 平均长度 |
---|---|---|---|---|
Diginetica | 981 620 | 777 029 | 42 596 | 4.80 |
Gowalla | 1 122 788 | 830 893 | 29 510 | 3.85 |
模型 | Diginetica | Gowalla | ||
---|---|---|---|---|
HR@20 | MRR@20 | HR@20 | MRR@20 | |
Item-KNN | 39.51 | 11.32 | 38.60 | 16.66 |
FPMC | 28.50 | 7.67 | 29.91 | 11.45 |
NARM | 49.80 | 16.54 | 50.07 | 23.93 |
SR-GNN | 50.81 | 17.31 | 50.32 | 24.25 |
GC-SAN | 50.90 | 17.59 | 50.68 | 24.67 |
LESSR | 51.75 | 18.17 | 51.37 | |
SR-SAN | 51.94 | 17.55 | 24.83 | |
CORE-trm | 51.19 | 24.66 | ||
SR-II-base | 52.71 | 18.23 | 52.00 | 25.35 |
SR-II | 53.12 | 18.42 | 52.41 | 25.79 |
Tab. 2 Comparison of HR@20 and MRR@20 among different models on two datasets
模型 | Diginetica | Gowalla | ||
---|---|---|---|---|
HR@20 | MRR@20 | HR@20 | MRR@20 | |
Item-KNN | 39.51 | 11.32 | 38.60 | 16.66 |
FPMC | 28.50 | 7.67 | 29.91 | 11.45 |
NARM | 49.80 | 16.54 | 50.07 | 23.93 |
SR-GNN | 50.81 | 17.31 | 50.32 | 24.25 |
GC-SAN | 50.90 | 17.59 | 50.68 | 24.67 |
LESSR | 51.75 | 18.17 | 51.37 | |
SR-SAN | 51.94 | 17.55 | 24.83 | |
CORE-trm | 51.19 | 24.66 | ||
SR-II-base | 52.71 | 18.23 | 52.00 | 25.35 |
SR-II | 53.12 | 18.42 | 52.41 | 25.79 |
模型 | 时间复杂度 | 平均训练时间/s |
---|---|---|
SR-GNN | 437.69 | |
GC-SAN | 627.10 | |
LESSR | 412.24 | |
SR-SAN | 441.26 | |
CORE-trm | 201.35 | |
SR-II-base | 527.14 | |
SR-II | 3 057.72 |
Tab. 3 Comparisons of time complexity and average training time among different models
模型 | 时间复杂度 | 平均训练时间/s |
---|---|---|
SR-GNN | 437.69 | |
GC-SAN | 627.10 | |
LESSR | 412.24 | |
SR-SAN | 441.26 | |
CORE-trm | 201.35 | |
SR-II-base | 527.14 | |
SR-II | 3 057.72 |
1 | SHI L, ZHANG Y, CHENG J, et al. Skeleton-based action recognition with directed graph neural networks [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7912-7921. 10.1109/cvpr.2019.00810 |
2 | GOMES J, RAMSUNDAR B, FEINBERG E N, et al. Atomic convolutional networks for predicting protein-ligand binding affinity[EB/OL]. [2022-05-10]. . |
3 | MA T, XIAO C, ZHOU J, et al. Drug similarity integration through attentive multi-view graph auto-encoders[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: IJCAI, 2018: 3477-3483. 10.24963/ijcai.2018/483 |
4 | YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: IJCAI, 2018: 3634-3640. 10.24963/ijcai.2018/505 |
5 | KOSARAJU V, SADEGHIAN A, MARTÍN-MARTÍN R, et al. Social-bigat: multimodal trajectory forecasting using bicycle-gan and graph attention networks[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. [S.l.]: NIPS, 2019: 137-146. |
6 | BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2014-04-21) [2022-07-10]. . 10.1017/cbo9780511761942.003 |
7 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2022-06-02]. . 10.48550/arXiv.1609.02907 |
8 | LI Y, ZEMEL R, BROCKSCHMIDT M, et al. Gated graph sequence neural networks [EB/OL]. [2022-03-26]. . |
9 | VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2022-03-28]. . |
10 | LEE J B, ROSSI R, KONG X. Graph classification using structural attention [C]// Proceedings of the 24th International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1666-1674. 10.1145/3219819.3219980 |
11 | 刘鑫,梅红岩,王嘉豪,等.图神经网络推荐方法研究[J]. 计算机工程与应用, 2022, 58(10): 41-49. 10.3778/j.issn.1002-8331.2110-0345 |
LIU X, MEI H Y, WANG J H, et al. Research on graph neural network recommendation method[J]. Computer Engineering and Applications, 2022, 58(10): 41-49. 10.3778/j.issn.1002-8331.2110-0345 | |
12 | SHANI G, HECKERMAN D, BRAFMAN R I, et al. An MDP-based recommender system [J]. Journal of Machine Learning Research, 2005, 6: 1265-1295. |
13 | RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820. 10.1145/1772690.1772773 |
14 | DAVIDSON J, LIEBALD B, LIU J, et al. The YouTube video recommendation system[C]// Proceedings of the 2010 4th ACM Conference on Recommender Systems. New York: ACM, 2010: 293-296. 10.1145/1864708.1864770 |
15 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. [2022-04-15]. . |
16 | TAN Y K, XU X, LIU Y. Improved recurrent neural networks for session-based recommendations[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 17-22. 10.1145/2988450.2988452 |
17 | LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation [C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017: 1419-1428. 10.1145/3132847.3132926 |
18 | LIU Q, ZENG Y, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1831-1839. 10.1145/3219819.3219950 |
19 | WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks [EB/OL]. [2022-11-01].. 10.1609/aaai.v33i01.3301346 |
20 | SONG W, XIAO Z, WANG Y, et al. Session-based social recommendation via dynamic graph attention networks[C]// Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 555-563. 10.1145/3289600.3290989 |
21 | YU F, ZHU Y, LIU Q, et al. TAGNN: target attentive graph neural networks for session-based recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1921-1924. 10.1145/3397271.3401319 |
22 | XU C, ZHAO P, LIU Y, et al. Graph contextualized self-attention network for session-based recommendation [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. PaloAlto, CA: AAAI Press, 2019: 3940-3946. 10.24963/ijcai.2019/547 |
23 | XIAN X, FANG L, SUN S. ReGNN: a repeat aware graph neural network for session-based recommendations[J]. IEEE Access, 2020, 8: 98518-98525. 10.1109/ACCESS.2020.2997722 |
24 | CHEN T, WONG R C W. Handling information loss of graph neural networks for session-based recommendation[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 1172-1180. 10.1145/3394486.3403170 |
25 | FANG J. Session-based Recommendation with self-attention networks[EB/OL]. [2022-04-28]. . |
26 | 南宁, 杨程屹, 武志昊. 基于多图神经网络的会话感知推荐模型[J]. 计算机应用, 2021, 41(2): 330-336. 10.11772/j.issn.1001-9081.2020060805 |
NAN N, YANG C Y, WU Z H. Multi-graph neural network-based session perception recommendation model[J]. Journal of Computer Applications, 2021, 41(2): 330-336. 10.11772/j.issn.1001-9081.2020060805 | |
27 | 任俊伟, 曾诚, 肖丝雨, 等. 基于会话的多粒度图神经网络推荐模型[J]. 计算机应用, 2021, 41(11): 3164-3170. 10.11772/j.issn.1001-9081.2021010060 |
REN J W, ZENG C, XIAO S Y, et al. Session-based recommendation model of multi-granular graph neural network[J]. Journal of Computer Applications, 2021, 41(11): 3164-3170. 10.11772/j.issn.1001-9081.2021010060 | |
28 | 黄震华, 林小龙, 孙圣力, 等. 会话场景下基于特征增强的图神经推荐方法[J]. 计算机学报, 2022, 45(4): 766-780. 10.11897/SP.J.1016.2022.00766 |
HUANG Z H, LIN X L, SUN S L, et al. Feature augmentation based graph neural recommendation method in session scenarios[J]. Chinese Journal of Computers, 2022, 45(4): 766-780. 10.11897/SP.J.1016.2022.00766 | |
29 | 闫昭,项欣光,李泽超.基于交互序列商品相关性建模的图卷积会话推荐[J]. 中国科学: 信息科学, 2022, 52(6): 1069-1082. |
YAN Z, XIANG X G, LI Z C. Graph convolution session recommendation based on interactive sequence commodity correlation modeling[J]. SCIENTIA SINICA Informationis, 2022, 52(6): 1069-1082. | |
30 | HOU Y, HU B, ZHANG Z, et al. CORE: simple and effective session-based recommendation within consistent representation space[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1796-1801. 10.1145/3477495.3531955 |
31 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4700-4708. 10.1109/cvpr.2017.243 |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[4] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[5] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[6] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[7] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[8] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[9] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[10] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||