Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (12): 3941-3946.DOI: 10.11772/j.issn.1001-9081.2022121917
• Frontier and comprehensive applications • Previous Articles Next Articles
Ronghao LUO, Zhiyou CHENG, Chuanjian WANG(), Siqian LIU, Zhentian WANG
Received:
2023-01-04
Revised:
2023-04-05
Accepted:
2023-04-06
Online:
2023-04-12
Published:
2023-12-10
Contact:
Chuanjian WANG
About author:
LUO Ronghao, born in 1997, M. S. candidate. His research interests include object detection, micro-action recognition.Supported by:
通讯作者:
汪传建
作者简介:
罗荣昊(1997—),男,安徽滁州人,硕士研究生,主要研究方向:目标检测、微动作识别基金资助:
CLC Number:
Ronghao LUO, Zhiyou CHENG, Chuanjian WANG, Siqian LIU, Zhentian WANG. Anesthesia resuscitation object detection method based on improved single shot multibox detector[J]. Journal of Computer Applications, 2023, 43(12): 3941-3946.
罗荣昊, 程志友, 汪传建, 刘思乾, 汪真天. 基于改进单点多盒检测器的麻醉复苏目标检测方法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3941-3946.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022121917
模型 | 不同表情检测精确度 | mAP | |||
---|---|---|---|---|---|
睁眼 | 闭眼 | 张嘴 | 闭嘴 | ||
SSD | 92.48 | 96.09 | 94.91 | 91.87 | 93.84 |
CA-SSD | 94.78 | 97.53 | 95.47 | 92.33 | 95.03 |
MobileNetV2-SSD | 93.41 | 96.85 | 96.30 | 93.37 | 94.99 |
本文模型 | 93.75 | 97.05 | 96.78 | 93.35 | 95.23 |
Tab.1 Comparison of detection precision of different models
模型 | 不同表情检测精确度 | mAP | |||
---|---|---|---|---|---|
睁眼 | 闭眼 | 张嘴 | 闭嘴 | ||
SSD | 92.48 | 96.09 | 94.91 | 91.87 | 93.84 |
CA-SSD | 94.78 | 97.53 | 95.47 | 92.33 | 95.03 |
MobileNetV2-SSD | 93.41 | 96.85 | 96.30 | 93.37 | 94.99 |
本文模型 | 93.75 | 97.05 | 96.78 | 93.35 | 95.23 |
模型 | 模型大小/MB | 检测速度/(frame·s-1) | |
---|---|---|---|
显卡 | 处理器 | ||
SSD | 92.1 | 153 | 10 |
CA-SSD | 93.4 | 125 | 9 |
MobileNetV2-SSD | 15.8 | 81 | 25 |
本文模型 | 17.3 | 74 | 24 |
Tab.2 Comparison of size and detection speed of different models
模型 | 模型大小/MB | 检测速度/(frame·s-1) | |
---|---|---|---|
显卡 | 处理器 | ||
SSD | 92.1 | 153 | 10 |
CA-SSD | 93.4 | 125 | 9 |
MobileNetV2-SSD | 15.8 | 81 | 25 |
本文模型 | 17.3 | 74 | 24 |
模型 | 不同表情平均对数漏检率 | |||
---|---|---|---|---|
睁眼 | 闭眼 | 张嘴 | 闭嘴 | |
SSD | 0.18 | 0.08 | 0.09 | 0.12 |
CA-SSD | 0.13 | 0.07 | 0.07 | 0.13 |
MobileNetV2-SSD | 0.17 | 0.11 | 0.05 | 0.09 |
本文模型 | 0.13 | 0.06 | 0.04 | 0.05 |
Tab.3 Comparison of log-average miss rate of different models
模型 | 不同表情平均对数漏检率 | |||
---|---|---|---|---|
睁眼 | 闭眼 | 张嘴 | 闭嘴 | |
SSD | 0.18 | 0.08 | 0.09 | 0.12 |
CA-SSD | 0.13 | 0.07 | 0.07 | 0.13 |
MobileNetV2-SSD | 0.17 | 0.11 | 0.05 | 0.09 |
本文模型 | 0.13 | 0.06 | 0.04 | 0.05 |
1 | DESBOROUGH J P. The stress response to trauma and surgery[J]. British Journal of Anaesthesia,2000,85(1):109-117. 10.1093/bja/85.1.109 |
2 | DOBSON G P. Addressing the global burden of trauma in major surgery[EB/OL].[2022-12-20]. doi:10.3389/fsurg.2015.00043 . |
3 | CUSACK B, BUGGY D J. Anaesthesia, analgesia, and the surgical stress response[J]. BJA Education, 2020,20(9) : 321-328. 10.1016/j.bjae.2020.04.006 |
4 | HIROSE M, OKUTANI H, HASHIMOTO K, et al. Intraoperative assessment of surgical stress response using nociception monitor under general anesthesia and postoperative complications: a narrative review[J]. Journal of Clinical Medicine, 2022,11(20): No. 6080. 10.3390/jcm11206080 |
5 | PENSON D F. Re: relationship between occurrence of surgical complications and hospital finances[J]. The Journal of Urology, 2013, 190(6): 2211-2213. 10.1016/j.juro.2013.08.063 |
6 | DOBSON G P. Trauma of major surgery: a global problem that is not going away [J]. International Journal of Surgery, 2020, 81:47-54. 10.1016/j.ijsu.2020.07.017 |
7 | LUDBROOK G L. The hidden pandemic: the cost of postoperative complications [J]. Current Anesthesiology Reports, 2021, 12(1):1-9. 10.1007/s40140-021-00493-y |
8 | 郭清厚,钟娆霞,莫玉林.靶向预控护理在全麻手术患者复苏期躁动管理中的应用[J].齐鲁护理杂志,2019,25(6):92-94. 10.3969/j.issn.1006-7256.2019.06.033 |
GUO Q H, ZHONG R X, MO Y L. Application of targeted pre-control nursing in restlessness management of patients undergoing general anesthesia surgery during recovery [J]. Journal of Qilu Nursing, 2019, 25(6): 92-94. 10.3969/j.issn.1006-7256.2019.06.033 | |
9 | SOUKUPOVÁ T, CECH J. Real-time eye blink detection using facial landmarks [EB/OL].[2022-12-20]. . |
10 | NOUSIAS G, E-K PANAGIOTOPOULOU, DELIBASIS K, et al. Video-based eye blink identification and classification[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(7): 3284-3293. 10.1109/jbhi.2022.3153407 |
11 | DE LA CRUZ G, LIRA M, LUACES O, et al. Eye-LRCN: a long-term recurrent convolutional network for eye blink completeness detection[J/OL]. IEEE Transactions on Neural Networks and Learning Systems, 2022[2022-11-29]. . 10.1109/tnnls.2022.3202643 |
12 | CHEN Y, ZHAO D, HE G. Deep learning-based fatigue detection for online learners[C]// Proceedings of the 2022 5th International Conference on Pattern Recognition and Artificial Intelligence. Piscataway: IEEE, 2022 : 924-927. 10.1109/prai55851.2022.9904096 |
13 | WANG Z, CHAI J, XIA S. Realtime and accurate 3D eye gaze capture with DCNN-based iris and pupil segmentation [J]. IEEE Transactions on Visualization and Computer Graphics, 2021,27(1):190-203. 10.1109/tvcg.2019.2938165 |
14 | PRINSEN V, JOUVET P, OMAR S A, et al. Automatic eye localization for hospitalized infants and children using convolutional neural networks [J]. International Journal of Medical Informatics, 2021, 146: 104344. 10.1016/j.ijmedinf.2020.104344 |
15 | LIU W, ANGUELOV D, ERHAN D,et al. SSD:single shot multibox detector [C]// Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham: Springer,2016: 21-37. |
16 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2022-12-20]. . |
17 | SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:4510-4520. 10.1109/cvpr.2018.00474 |
18 | HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks.[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. 10.1109/tpami.2019.2913372 |
19 | WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020 :11531-11539. 10.1109/cvpr42600.2020.01155 |
20 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2021 :13708-13717. 10.1109/cvpr46437.2021.01350 |
21 | ZHAO L, WANG Z, ZHANG G,et al.Eye state recognition based on deep integrated neural network and transfer learning[J].Multimedia Tools and Applications, 2018, 77(15):19415-19438. 10.1007/s11042-017-5380-8 |
22 | HUANG G B, MATTAR M, BERG T,et al.Labeled faces in the wild: a database for studying face recognition in unconstrained environments [EB/OL].[2022-12-22].. 10.1117/12.2080393 |
23 | TAN C, SUN F, KONG T, et al. A survey on deep transfer learning [C]// Proceedings of the 2018 International Conference on Artificial Neural Networks and Machine Learning. Cham: Springer, 2018:270-279. 10.1007/978-3-030-01424-7_27 |
24 | MA N, ZHANG X., ZHENG H T,et al. ShuffleNet v2: practical guidelines for efficient cnn architecture design [C]// Proceedings of the 2018 European Conference on Computer Vision. Cham:Springer, 2018 :122-138. 10.1007/978-3-030-01264-9_8 |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[9] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[11] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[12] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[15] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||