Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (3): 736-743.DOI: 10.11772/j.issn.1001-9081.2022020207
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Tao PENG1,2,3, Yalong KANG2,3, Feng YU1,3(), Zili ZHANG2,3, Junping LIU2,3, Xinrong HU2,3, Ruhan HE1,3, Li LI1,2
Received:
2022-02-24
Revised:
2022-05-17
Accepted:
2022-05-19
Online:
2022-08-16
Published:
2023-03-10
Contact:
Feng YU
About author:
PENG Tao, born in 1981, Ph. D., professor. His research interests include data reduction, pattern recognition, network security.Supported by:
彭涛1,2,3, 康亚龙2,3, 余锋1,3(), 张自力2,3, 刘军平2,3, 胡新荣2,3, 何儒汉1,3, 李丽1,2
通讯作者:
余锋
作者简介:
彭涛(1981—),男,湖北武汉人,教授,博士,CCF会员,主要研究方向:数据简化、模式识别、网络安全基金资助:
CLC Number:
Tao PENG, Yalong KANG, Feng YU, Zili ZHANG, Junping LIU, Xinrong HU, Ruhan HE, Li LI. Pedestrian trajectory prediction based on multi-head soft attention graph convolutional network[J]. Journal of Computer Applications, 2023, 43(3): 736-743.
彭涛, 康亚龙, 余锋, 张自力, 刘军平, 胡新荣, 何儒汉, 李丽. 基于多头软注意力图卷积网络的行人轨迹预测[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 736-743.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022020207
算法 | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
S-LSTM | 1.09 | 2.35 | 0.79 | 1.76 | 0.67 | 1.40 | 0.47 | 1.00 | 0.56 | 1.17 | 0.72 | 1.54 |
S-GAN | 0.87 | 1.62 | 0.67 | 1.37 | 0.76 | 1.52 | 0.35 | 0.68 | 0.42 | 0.84 | 0.61 | 1.21 |
SoPhie | 0.70 | 1.43 | 0.76 | 1.67 | 0.54 | 1.24 | 0.30 | 0.63 | 0.38 | 0.78 | 0.51 | 1.15 |
PITF | 0.73 | 1.65 | 0.30 | 0.59 | 0.60 | 1.27 | 0.38 | 0.81 | 0.31 | 0.68 | 0.46 | 1.00 |
S-BIGAT | 0.69 | 1.29 | 0.49 | 1.01 | 0.55 | 1.32 | 0.30 | 0.62 | 0.36 | 0.75 | 0.48 | 1.00 |
GAT | 0.68 | 1.29 | 0.68 | 1.40 | 0.57 | 1.29 | 0.29 | 0.60 | 0.37 | 0.75 | 0.52 | 1.07 |
SSTGCNN | 0.64 | 1.11 | 0.49 | 0.85 | 0.44 | 0.79 | 0.34 | 0.53 | 0.30 | 0.48 | 0.44 | 0.75 |
RSBG | 0.80 | 1.53 | 0.33 | 0.64 | 0.59 | 1.25 | 0.40 | 0.86 | 0.30 | 0.65 | 0.48 | 0.99 |
STAR | 0.56 | 1.11 | 0.26 | 0.50 | 0.52 | 1.15 | 0.41 | 0.90 | 0.31 | 0.71 | 0.41 | 0.87 |
SOPM | 0.61 | 1.27 | 0.40 | 0.81 | 0.34 | 0.68 | 0.23 | 0.49 | 0.21 | 0.45 | 0.36 | 0.74 |
SA-GAN | 0.72 | 1.28 | 0.50 | 1.01 | 0.58 | 1.19 | 0.42 | 0.83 | 0.39 | 0.85 | 0.52 | 1.03 |
TP-GCN | 0.74 | 1.24 | 0.28 | 0.51 | 0.50 | 1.07 | 0.33 | 0.71 | 0.28 | 0.61 | 0.43 | 0.83 |
SGCN | 0.63 | 1.03 | 0.32 | 0.55 | 0.37 | 0.70 | 0.29 | 0.53 | 0.25 | 0.45 | 0.37 | 0.65 |
本文算法 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 |
Tab. 1 ADE, FDE indicators of different algorithms
算法 | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
S-LSTM | 1.09 | 2.35 | 0.79 | 1.76 | 0.67 | 1.40 | 0.47 | 1.00 | 0.56 | 1.17 | 0.72 | 1.54 |
S-GAN | 0.87 | 1.62 | 0.67 | 1.37 | 0.76 | 1.52 | 0.35 | 0.68 | 0.42 | 0.84 | 0.61 | 1.21 |
SoPhie | 0.70 | 1.43 | 0.76 | 1.67 | 0.54 | 1.24 | 0.30 | 0.63 | 0.38 | 0.78 | 0.51 | 1.15 |
PITF | 0.73 | 1.65 | 0.30 | 0.59 | 0.60 | 1.27 | 0.38 | 0.81 | 0.31 | 0.68 | 0.46 | 1.00 |
S-BIGAT | 0.69 | 1.29 | 0.49 | 1.01 | 0.55 | 1.32 | 0.30 | 0.62 | 0.36 | 0.75 | 0.48 | 1.00 |
GAT | 0.68 | 1.29 | 0.68 | 1.40 | 0.57 | 1.29 | 0.29 | 0.60 | 0.37 | 0.75 | 0.52 | 1.07 |
SSTGCNN | 0.64 | 1.11 | 0.49 | 0.85 | 0.44 | 0.79 | 0.34 | 0.53 | 0.30 | 0.48 | 0.44 | 0.75 |
RSBG | 0.80 | 1.53 | 0.33 | 0.64 | 0.59 | 1.25 | 0.40 | 0.86 | 0.30 | 0.65 | 0.48 | 0.99 |
STAR | 0.56 | 1.11 | 0.26 | 0.50 | 0.52 | 1.15 | 0.41 | 0.90 | 0.31 | 0.71 | 0.41 | 0.87 |
SOPM | 0.61 | 1.27 | 0.40 | 0.81 | 0.34 | 0.68 | 0.23 | 0.49 | 0.21 | 0.45 | 0.36 | 0.74 |
SA-GAN | 0.72 | 1.28 | 0.50 | 1.01 | 0.58 | 1.19 | 0.42 | 0.83 | 0.39 | 0.85 | 0.52 | 1.03 |
TP-GCN | 0.74 | 1.24 | 0.28 | 0.51 | 0.50 | 1.07 | 0.33 | 0.71 | 0.28 | 0.61 | 0.43 | 0.83 |
SGCN | 0.63 | 1.03 | 0.32 | 0.55 | 0.37 | 0.70 | 0.29 | 0.53 | 0.25 | 0.45 | 0.37 | 0.65 |
本文算法 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 |
算法 | 参数量/103 | 推理时间/s |
---|---|---|
S-LSTM | 264.000 | 1.178 9 |
SR-LSTM | 64.900 | 0.157 8 |
S-GAN | 46.300 | 0.096 8 |
PITF | 360.300 | 0.114 5 |
SSTGCNN | 7.600 | 0.002 0 |
SGCN | 25.369 | 0.003 0 |
本文算法 | 18.184 | 0.003 0 |
Tab.2 Parameters and reasoning time of algorithms
算法 | 参数量/103 | 推理时间/s |
---|---|---|
S-LSTM | 264.000 | 1.178 9 |
SR-LSTM | 64.900 | 0.157 8 |
S-GAN | 46.300 | 0.096 8 |
PITF | 360.300 | 0.114 5 |
SSTGCNN | 7.600 | 0.002 0 |
SGCN | 25.369 | 0.003 0 |
本文算法 | 18.184 | 0.003 0 |
模块 | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
MS ATT | 0.64 | 0.92 | 0.29 | 0.42 | 0.37 | 0.72 | 0.27 | 0.49 | 0.24 | 0.42 | 0.36 | 0.60 |
Involution | 0.65 | 1.03 | 0.25 | 0.42 | 0.37 | 0.64 | 0.28 | 0.46 | 0.23 | 0.40 | 0.36 | 0.59 |
本文算法 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 |
Tab. 3 Ablation experimental results of different modules
模块 | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
MS ATT | 0.64 | 0.92 | 0.29 | 0.42 | 0.37 | 0.72 | 0.27 | 0.49 | 0.24 | 0.42 | 0.36 | 0.60 |
Involution | 0.65 | 1.03 | 0.25 | 0.42 | 0.37 | 0.64 | 0.28 | 0.46 | 0.23 | 0.40 | 0.36 | 0.59 |
本文算法 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 |
ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
0.00 | 0.63 | 1.00 | 0.35 | 0.65 | 0.39 | 0.72 | 0.28 | 0.51 | 0.24 | 0.44 | 0.38 | 0.66 |
0.25 | 0.66 | 1.12 | 0.31 | 0.54 | 0.38 | 0.72 | 0.27 | 0.46 | 0.24 | 0.42 | 0.37 | 0.65 |
0.50 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 |
0.75 | 0.68 | 1.30 | 0.32 | 0.57 | 0.38 | 0.70 | 0.28 | 0.50 | 0.23 | 0.43 | 0.38 | 0.70 |
1.00 | 0.70 | 1.41 | 0.34 | 0.61 | 0.38 | 0.72 | 0.27 | 0.48 | 0.23 | 0.41 | 0.38 | 0.73 |
Tab. 4 ADE/FDE indicators of ablation experiments of different ε
ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | ADE | FDE | |
0.00 | 0.63 | 1.00 | 0.35 | 0.65 | 0.39 | 0.72 | 0.28 | 0.51 | 0.24 | 0.44 | 0.38 | 0.66 |
0.25 | 0.66 | 1.12 | 0.31 | 0.54 | 0.38 | 0.72 | 0.27 | 0.46 | 0.24 | 0.42 | 0.37 | 0.65 |
0.50 | 0.60 | 0.85 | 0.26 | 0.37 | 0.36 | 0.64 | 0.29 | 0.43 | 0.23 | 0.40 | 0.35 | 0.54 |
0.75 | 0.68 | 1.30 | 0.32 | 0.57 | 0.38 | 0.70 | 0.28 | 0.50 | 0.23 | 0.43 | 0.38 | 0.70 |
1.00 | 0.70 | 1.41 | 0.34 | 0.61 | 0.38 | 0.72 | 0.27 | 0.48 | 0.23 | 0.41 | 0.38 | 0.73 |
1 | LARGE F, VASQUEZ D, FRAICHARD T, et al. Avoiding cars and pedestrians using velocity obstacles and motion prediction[C]// Proceedings of the 2004 IEEE Intelligent Vehicle Symposium. Piscataway: IEEE, 2004: 375-379. |
2 | HELBING D, MOLNÁR P. Social force model for pedestrian dynamics[J]. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(5): 4282-4286. 10.1103/physreve.51.4282 |
3 | KELLER C G, GAVRILA D M. Will the pedestrian cross? a study on pedestrian path prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 494-506. 10.1109/tits.2013.2280766 |
4 | KOOIJ J F P, SCHNEIDER N, FLOHR F, et al. Context-based pedestrian path prediction[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8694. Cham: Springer, 2014: 618-633. |
5 | ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:961-971. 10.1109/cvpr.2016.110 |
6 | GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:2255-2264. 10.1109/cvpr.2018.00240 |
7 | MOHAMED A, QIAN K, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020:14412-14420. 10.1109/cvpr42600.2020.01443 |
8 | SHI L S, WANG L, LONG C J, et al. SGCN: sparse graph convolution network for pedestrian trajectory prediction[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8990-9009. 10.1109/cvpr46437.2021.00888 |
9 | LI D, HU J, WANG C H, et al. Involution: inverting the inherence of convolution for visual recognition[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12316-12325. 10.1109/cvpr46437.2021.01214 |
10 | BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-04-19) [2021-12-22].. |
11 | SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:1349-1358. 10.1109/cvpr.2019.00144 |
12 | LIANG J W, JIANG L, NIEBLES J C, et al. Peeking into the future: predicting future person activities and locations in videos[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:5718-5727. 10.1109/cvprw.2019.00358 |
13 | KOSARAJU V, SADEGHIAN A, MARTÍN-MARTÍN R, et al. Social-BiGAT: Multimodal trajectory forecasting using bicycle-GAN and graph attention networks[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing System. [2021-12-17].. |
14 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2021-12-23].. |
15 | SUN J H, JIANG Q H, LU C W. Recursive social behavior graph for trajectory prediction[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 657-666. 10.1109/cvpr42600.2020.00074 |
16 | YU C J, MA X, REN J W, et al. Spatio-temporal graph transformer networks for pedestrian trajectory prediction[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12357. Cham: Springer, 2020: 507-523. |
17 | 王天保,刘昱,郭继昌,等. 图卷积神经网络行人轨迹预测算法[J]. 哈尔滨工业大学学报, 2021, 53(2):53-60. 10.11918/202006051 |
WANG T B, LIU Y, GUO J C, et al. Pedestrian trajectory prediction algorithm based on graph convolutional network[J]. Journal of Harbin Institute of Technology, 2021, 53(2):53-60. 10.11918/202006051 | |
18 | 张志远,刁英华. 结合社会特征和注意力的行人轨迹预测模型[J]. 西安电子科技大学学报, 2020, 47(1):10-17, 79. 10.19665/j.issn1001-2400.2020.01.002 |
ZHANG Z Y, DIAO Y H. Pedestrian trajectory prediction model with social features and attention[J]. Journal of Xidian University, 2020, 47(1):10-17, 79. 10.19665/j.issn1001-2400.2020.01.002 | |
19 | 毛琳,巩欣飞,杨大伟,等. 空时社交关系池化行人轨迹预测模型[J]. 计算机辅助设计与图形学学报, 2020, 32(12):1918-1925. 10.3724/sp.j.1089.2020.18236 |
MAO L, GONG X F, YANG D W, et al. Space-time social relationship pooling pedestrian trajectory prediction model[J]. Journal of Computer-Aided Design and Graphics, 2020, 32(12):1918-1925. 10.3724/sp.j.1089.2020.18236 | |
20 | 李琳辉,周彬,连静,等. 基于社会注意力机制的行人轨迹预测方法研究[J]. 通信学报, 2020, 41(6):175-183. 10.11959/j.issn.1000-436x.2020100 |
LI L H, ZHOU B, LIAN J, et al. Research on pedestrian trajectory prediction method based on social attention mechanism[J]. Journal on Communication, 2020, 41(6):175-183. 10.11959/j.issn.1000-436x.2020100 | |
21 | 程媛,迟荣华,黄少滨,等. 基于非参数密度估计的不确定轨迹预测方法[J]. 自动化学报, 2019, 45(4):787-798. 10.16383/j.aas.2018.c170419 |
CHENG Y, CHI R H, HUANG S B, et al. Uncertain trajectory prediction method using non-parametric density estimation[J]. Acta Automatica Sinica, 2019, 45(4):787-798. 10.16383/j.aas.2018.c170419 | |
22 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-12-22].. 10.48550/arXiv.1609.02907 |
23 | YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:7444-7452. 10.1609/aaai.v32i1.12328 |
24 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018:3-19. |
25 | PELLEGRINI S, ESS A, SCHINDLER K, et al. You'll never walk alone: modeling social behavior for multi-target tracking[C]// Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 261-268. 10.1109/iccv.2009.5459260 |
26 | LERNER A, CHRYSANTHOU Y, LISCHINSKI D. Crowds by example[J]. Computer Graphics Forum, 2007, 26(3): 655-664. 10.1111/j.1467-8659.2007.01089.x |
27 | RAKSINCHAROENSAK P, HASEGAWA T, NAGAI M. Motion planning and control of autonomous driving intelligence system based on risk potential optimization framework[J]. International Journal of Automotive Engineering, 2016, 7(AVEC14):53-60. 10.20485/jsaeijae.7.avec14_53 |
28 | HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1026-1034. 10.1109/iccv.2015.123 |
29 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-12-22].. |
30 | ZHANG P, OUYANG W L, ZHANG P F, et al. SR-LSTM: state refinement for LSTM towards pedestrian trajectory prediction[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12077-12086. 10.1109/cvpr.2019.01236 |
[1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[2] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[3] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[4] | Chenqian LI, Jun LIU. Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention [J]. Journal of Computer Applications, 2024, 44(8): 2604-2610. |
[5] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[6] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[7] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. |
[8] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[9] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
[10] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. |
[11] | Boyue WANG, Yingxiang LI, Jiandan ZHONG. Segmentation network for day and night ground-based cloud images based on improved Res-UNet [J]. Journal of Computer Applications, 2024, 44(4): 1310-1316. |
[12] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. |
[13] | Zucheng WU, Xiaojun WU, Tianyang XU. Image-text retrieval model based on intra-modal fine-grained feature relationship extraction [J]. Journal of Computer Applications, 2024, 44(12): 3776-3783. |
[14] | Xinrong HU, Jingxue CHEN, Zijian HUANG, Bangchao WANG, Xun YAO, Junping LIU, Qiang ZHU, Jie YANG. Graph convolution network-based masked data augmentation [J]. Journal of Computer Applications, 2024, 44(11): 3335-3344. |
[15] | Nengqiang XIANG, Xiaofei ZHU, Zhaoze GAO. Information diffusion prediction model of prototype-aware dual-channel graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(10): 3260-3266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||