Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (4): 1013-1020.DOI: 10.11772/j.issn.1001-9081.2022030329
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Mengting GE1, Minghua WAN1,2()
Received:
2022-03-21
Revised:
2022-06-18
Accepted:
2022-06-27
Online:
2023-04-11
Published:
2023-04-10
Contact:
Minghua WAN
About author:
GE Mengting, born in 1998, M. S. candidate. Her research interests include pattern recognition, feature extraction, face recognition, low-rank learning.
Supported by:
通讯作者:
万鸣华
作者简介:
葛孟婷(1998—),女,江苏连云港人,硕士研究生,CCF会员,主要研究方向:模式识别、特征提取、人脸识别、低秩学习;
基金资助:
CLC Number:
Mengting GE, Minghua WAN. Feature extraction model based on neighbor supervised locally invariant robust principal component analysis[J]. Journal of Computer Applications, 2023, 43(4): 1013-1020.
葛孟婷, 万鸣华. 基于近邻监督局部不变鲁棒主成分分析的特征提取模型[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1013-1020.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022030329
算法 | ORL | Yale | COIL-20-Processed | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
原始图像 | 5×5遮挡块 | 10×10遮挡块 | 原始图像 | 5×5遮挡块 | 10×10遮挡块 | 原始图像 | 5×5遮挡块 | 10×10遮挡块 | ||||||||||
识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | |
PCA | 89.00 | 29 | 69.30 | 40 | 50.37 | 38 | 87.01 | 46 | 72.33 | 40 | 68.30 | 37 | 61.10 | 32 | 61.03 | 36 | 60.18 | 30 |
PCA-L1 | 89.12 | 40 | 69.34 | 36 | 50.45 | 31 | 87.85 | 41 | 72.66 | 40 | 68.33 | 35 | 61.51 | 32 | 61.33 | 32 | 60.83 | 40 |
LPP | 89.35 | 42 | 69.36 | 40 | 50.52 | 34 | 90.40 | 21 | 76.00 | 33 | 74.66 | 27 | 62.69 | 20 | 62.16 | 24 | 61.90 | 24 |
NMF | 79.62 | 31 | 67.50 | 30 | 50.25 | 34 | 86.66 | 36 | 66.66 | 39 | 66.33 | 34 | 62.93 | 28 | 62.71 | 30 | 62.02 | 29 |
LIRPCA | 89.36 | 22 | 69.37 | 14 | 50.62 | 28 | 90.50 | 12 | 89.67 | 12 | 88.33 | 11 | 63.18 | 13 | 63.02 | 12 | 62.80 | 12 |
NSLIRPCA(p=1.5) | 89.38 | 29 | 69.38 | 27 | 50.63 | 31 | 91.50 | 22 | 89.78 | 26 | 88.80 | 29 | 63.19 | 16 | 63.10 | 20 | 63.03 | 18 |
NSLIRPCA(p=1.0) | 90.63 | 29 | 69.40 | 29 | 51.25 | 28 | 92.00 | 22 | 89.93 | 26 | 89.24 | 30 | 63.33 | 18 | 63.26 | 19 | 63.11 | 21 |
NSLIRPCA(p=0.5) | 91.25 | 31 | 81.25 | 57 | 59.38 | 51 | 94.67 | 22 | 90.67 | 27 | 89.33 | 26 | 63.41 | 19 | 63.33 | 20 | 63.18 | 22 |
Tab. 1 The highest recognition rate of each algorithm on ORL, Yale and COIL-20-Processed datasets under block occlusion
算法 | ORL | Yale | COIL-20-Processed | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
原始图像 | 5×5遮挡块 | 10×10遮挡块 | 原始图像 | 5×5遮挡块 | 10×10遮挡块 | 原始图像 | 5×5遮挡块 | 10×10遮挡块 | ||||||||||
识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | |
PCA | 89.00 | 29 | 69.30 | 40 | 50.37 | 38 | 87.01 | 46 | 72.33 | 40 | 68.30 | 37 | 61.10 | 32 | 61.03 | 36 | 60.18 | 30 |
PCA-L1 | 89.12 | 40 | 69.34 | 36 | 50.45 | 31 | 87.85 | 41 | 72.66 | 40 | 68.33 | 35 | 61.51 | 32 | 61.33 | 32 | 60.83 | 40 |
LPP | 89.35 | 42 | 69.36 | 40 | 50.52 | 34 | 90.40 | 21 | 76.00 | 33 | 74.66 | 27 | 62.69 | 20 | 62.16 | 24 | 61.90 | 24 |
NMF | 79.62 | 31 | 67.50 | 30 | 50.25 | 34 | 86.66 | 36 | 66.66 | 39 | 66.33 | 34 | 62.93 | 28 | 62.71 | 30 | 62.02 | 29 |
LIRPCA | 89.36 | 22 | 69.37 | 14 | 50.62 | 28 | 90.50 | 12 | 89.67 | 12 | 88.33 | 11 | 63.18 | 13 | 63.02 | 12 | 62.80 | 12 |
NSLIRPCA(p=1.5) | 89.38 | 29 | 69.38 | 27 | 50.63 | 31 | 91.50 | 22 | 89.78 | 26 | 88.80 | 29 | 63.19 | 16 | 63.10 | 20 | 63.03 | 18 |
NSLIRPCA(p=1.0) | 90.63 | 29 | 69.40 | 29 | 51.25 | 28 | 92.00 | 22 | 89.93 | 26 | 89.24 | 30 | 63.33 | 18 | 63.26 | 19 | 63.11 | 21 |
NSLIRPCA(p=0.5) | 91.25 | 31 | 81.25 | 57 | 59.38 | 51 | 94.67 | 22 | 90.67 | 27 | 89.33 | 26 | 63.41 | 19 | 63.33 | 20 | 63.18 | 22 |
算法 | 原始图像 | 5×5遮挡块 | 10×10遮挡块 | |||
---|---|---|---|---|---|---|
识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | |
PCA | 73.00 | 40 | 68.34 | 42 | 62.83 | 46 |
PCA-L1 | 76.75 | 38 | 69.25 | 40 | 64.75 | 42 |
LPP | 77.26 | 36 | 73.20 | 38 | 65.30 | 40 |
NMF | 65.63 | 30 | 63.12 | 32 | 61.87 | 36 |
LIRPCA | 77.70 | 17 | 74.80 | 29 | 65.81 | 45 |
NSLIRPCA(p=1.5) | 78.00 | 20 | 75.00 | 37 | 66.00 | 45 |
NSLIRPCA(p=1) | 78.50 | 24 | 76.00 | 39 | 67.03 | 46 |
NSLIRPCA(p=0.5) | 79.00 | 29 | 76.50 | 38 | 68.00 | 47 |
Tab. 2 The highest recognition rate of each algorithm on PolyU palmprint dataset under block occlusion
算法 | 原始图像 | 5×5遮挡块 | 10×10遮挡块 | |||
---|---|---|---|---|---|---|
识别率/% | 维度 | 识别率/% | 维度 | 识别率/% | 维度 | |
PCA | 73.00 | 40 | 68.34 | 42 | 62.83 | 46 |
PCA-L1 | 76.75 | 38 | 69.25 | 40 | 64.75 | 42 |
LPP | 77.26 | 36 | 73.20 | 38 | 65.30 | 40 |
NMF | 65.63 | 30 | 63.12 | 32 | 61.87 | 36 |
LIRPCA | 77.70 | 17 | 74.80 | 29 | 65.81 | 45 |
NSLIRPCA(p=1.5) | 78.00 | 20 | 75.00 | 37 | 66.00 | 45 |
NSLIRPCA(p=1) | 78.50 | 24 | 76.00 | 39 | 67.03 | 46 |
NSLIRPCA(p=0.5) | 79.00 | 29 | 76.50 | 38 | 68.00 | 47 |
算法 | 训练时间 | 算法 | 训练时间 |
---|---|---|---|
PCA | 0.24 | LIRPCA | 10.40 |
PCA-L1 | 39.68 | NSLIRPCA(p=1.5) | 1.67 |
LPP | 10.57 | NSLIRPCA(p=1) | 1.65 |
NMF | 0.42 | NSLIRPCA(p=0.5) | 1.57 |
Tab. 3 Training time of different algorithm on ORL dataset
算法 | 训练时间 | 算法 | 训练时间 |
---|---|---|---|
PCA | 0.24 | LIRPCA | 10.40 |
PCA-L1 | 39.68 | NSLIRPCA(p=1.5) | 1.67 |
LPP | 10.57 | NSLIRPCA(p=1) | 1.65 |
NMF | 0.42 | NSLIRPCA(p=0.5) | 1.57 |
1 | KIM W, LEE R, PARK M, et al. Low-light image enhancement using volume-based subspace analysis[J]. IEEE Access, 2020, 8: 118370-118379. 10.1109/ACCESS.2020.3005249 |
2 | NAPOLÉON T, LFALOU A A. Pose invariant face recognition: 3D model from single photo[J]. Optics and Lasers in Engineering, 2017, 89: 150-161. 10.1016/j.optlaseng.2016.06.019 |
3 | TURK M A, PENTLAND A P. Face recognition using eigenfaces[C]// Proceedings of the 1991 IEEE Computer Society on Computer Vision and Pattern Recognition. Piscataway: IEEE, 1991: 586-591. |
4 | BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720. 10.1109/34.598228 |
5 | BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 1373-1396. 10.1162/089976603321780317 |
6 | LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. 10.1038/44565 |
7 | 王平,王宜怀,余文森,等. 基于非负矩阵分解和极限学习机分类的合成孔径雷达图像变化检测[J]. 科学技术与工程, 2020, 20(5): 1959-1966. 10.3969/j.issn.1671-1815.2020.05.038 |
WANG P, WANG Y H, YU W S, et al. Change detection in SAR images based on NMF and ELM classification[J]. Science Technology and Engineering, 2020, 20(5): 1959-1966. 10.3969/j.issn.1671-1815.2020.05.038 | |
8 | JIAN Y, ZHANG D, FRANGI A F, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137. 10.1109/tpami.2004.1261097 |
9 | LUO D J, DING C, HUANG H. Symmetric two dimensional Linear Discriminant Analysis (2DLDA)[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 2820-2827. 10.1109/cvpr.2009.5206635 |
10 | YANG J, ZHANG D, YONG X, et al. Two-dimensional discriminant transform for face recognition[J]. Pattern Recognition, 2005, 38(7): 1125-1129. 10.1016/j.patcog.2004.11.019 |
11 | 胡姿岚,王海贤. L1-范数子空间技术的鲁棒建模综述[J]. 安徽大学学报(自然科学版), 2017, 41(5): 9-16. 10.3969/j.issn.1000-2162.2017.05.003 |
HU Z L, WANG H X. L1-norm based subspace techniques for robust modelling: a brief review[J]. Journal of Anhui University (Natural Science Edition), 2017, 41(5): 9-16. 10.3969/j.issn.1000-2162.2017.05.003 | |
12 | KWAK N. Principal component analysis based on L1-norm maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(9): 1672-1680. 10.1109/tpami.2008.114 |
13 | NIE F P, HUANG H, DING C, et al. Robust principal component analysis with non-greedy l1-norm maximization[C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2011: 1433-1438. |
14 | NIE F P, TIAN L, HUANG H, et al. Non-greedy L21-norm maximization for principal component analysis[J]. IEEE Transactions on Image Processing, 2021, 30: 5277-5286. 10.1109/tip.2021.3073282 |
15 | MARKOPOULOS P P, KARYSTINOS G N, PADOS D A. Optimal algorithms for L1-subspace signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 5046-5058. 10.1109/tsp.2014.2338077 |
16 | KWAK N. Principal component analysis by Lp-norm maximization[J]. IEEE Transactions on Cybernetics, 2014, 44(5): 594-609. 10.1109/tcyb.2013.2262936 |
17 | YE Q L, FU L Y, ZHANG Z, et al. Lp- and Ls-norm distance based robust linear discriminant analysis[J]. Neural Networks, 2018, 105: 393-404. 10.1016/j.neunet.2018.05.020 |
18 | HASSAN R J, ABDULAZEEZ A M. Deep learning convolutional neural network for face recognition: a review[J]. International Journal of Science and Business, 2021, 5(2): 114-127. 10.38007/nn.2021.020207 |
19 | 葛轶洲,刘恒,王言,等. 小样本困境下的深度学习图像识别综述[J]. 软件学报, 2022, 33(1): 193-210. |
GE Y Z, LIU H, WANG Y, et al. Survey on deep learning image recognition in dilemma of small samples[J]. Journal of Software, 2022, 33(1): 193-210. | |
20 | FU J L, WU Y, MEI T, et al. Relaxing from vocabulary: robust weakly-supervised deep learning for vocabulary-free image tagging[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1985-1993. 10.1109/iccv.2015.230 |
21 | BAI S, LI Y W, ZHOU Y Y, et al. Adversarial metric attack and defense for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6): 2119-2126. 10.1109/tpami.2020.3031625 |
22 | 刘会,赵波,郭嘉宝,等. 针对深度学习的对抗攻击综述[J]. 密码学报, 2021, 8(2): 202-214. |
LIU H, ZHAO B, GUO J B, et al. Survey on adversarial attacks towards deep learning[J]. Journal of Cryptologic Research, 2021, 8(2): 202-214. | |
23 | BI P F, DU X. Application of locally invariant robust PCA for underwater image recognition[J]. IEEE Access, 2021, 9: 29470-29481. 10.1109/access.2021.3058761 |
24 | 郑宝玉,李昂. 基于快速稀疏低秩和鲁棒主成分分析的图像处理算法的研究[J]. 信号处理, 2020, 36(2): 290-296. |
ZHENG B Y, LI A. Image processing algorithm based on fast sparse low rank and robust PCA[J]. Journal of Signal Processing, 2020, 36(2): 290-296. | |
25 | 杨紫晴,姚加林,伍国华,等. 集成协方差矩阵自适应进化策略与差分进化的优化算法[J]. 控制理论与应用, 2021, 38(10): 1493-1502. 10.7641/CTA.2021.10002 |
YANG Z Q, YAO J L, WU G H, et al. Ensemble optimization algorithm from covariance matrix adaptive evolution strategy and differential evolution[J]. Control Theory and Applications, 2021, 38(10): 1493-1502. 10.7641/CTA.2021.10002 | |
26 | KNOR M, ŠKREKOVSKI R. On the minimum distance in a k-vertex set in a graph[J]. Applied Mathematics and Computation, 2019, 356: 99-104. 10.1016/j.amc.2019.03.050 |
27 | NEUMAYER S, NIMMER M, SETZER S, et al. On the robust PCA and Weiszfeld’s algorithm[J]. Applied Mathematics and Optimization, 2020, 82(3): 1017-1048. 10.1007/s00245-019-09566-1 |
28 | 张悦,刘德山,王姗姗,等. 应用于人脸识别的改进局部保持投影算法[J]. 计算机测量与控制, 2019, 27(10): 176-180. |
ZHANG Y, LIU D S, WANG S S, et al. Improved locality preserving projections for face recognition[J]. Computer Measurement and Control, 2016, 27(10): 176-180. | |
29 | 唐吉深,覃少华. 稀疏表示系数下局部最优重构的SAR图像目标识别算法[J]. 探测与控制学报, 2021, 43(2): 69-75, 80. |
TANG J S, QIN S H. SAR images recognition based on sparse coefficients optimal local reconstruction[J]. Journal of Detection and Control, 2021, 43(2): 69-75, 80. | |
30 | 赵鹏,汪纯燕,张思颖,等. 一种基于融合重构的子空间学习的零样本图像分类方法[J]. 计算机学报, 2021, 44(2): 409-421. 10.11897/SP.J.1016.2021.00409 |
ZHAO P, WANG C Y, ZHANG S Y, et al. A zero-shot image classification method based on subspace learning with the fusion of reconstruction[J]. Chinese Journal of Computers, 2021, 44(2): 409-421. 10.11897/SP.J.1016.2021.00409 | |
31 | ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326. 10.1126/science.290.5500.2323 |
[1] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[2] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[3] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
[4] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[5] | Wudan LONG, Bo PENG, Jie HU, Ying SHEN, Danni DING. Road damage detection algorithm based on enhanced feature extraction [J]. Journal of Computer Applications, 2024, 44(7): 2264-2270. |
[6] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
[7] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. |
[8] | Zhihao WU, Ziqiu CHI, Ting XIAO, Zhe WANG. Meta-learning adaption for few-shot text-to-speech [J]. Journal of Computer Applications, 2024, 44(5): 1629-1635. |
[9] | Xiawuji, Heming HUANG, Gengzangcuomao, Yutao FAN. Survey of extractive text summarization based on unsupervised learning and supervised learning [J]. Journal of Computer Applications, 2024, 44(4): 1035-1048. |
[10] | Weina DONG, Jia LIU, Xiaozhong PAN, Lifeng CHEN, Wenquan SUN. High-capacity robust image steganography scheme based on encoding-decoding network [J]. Journal of Computer Applications, 2024, 44(3): 772-779. |
[11] | Rui JIANG, Wei LIU, Cheng CHEN, Tao LU. Asymmetric unsupervised end-to-end image deraining network [J]. Journal of Computer Applications, 2024, 44(3): 922-930. |
[12] | Jintao RAO, Zhe CUI. Electronic voting scheme based on SM2 threshold blind signature [J]. Journal of Computer Applications, 2024, 44(2): 512-518. |
[13] | Chenhui CUI, Suzhen LIN, Dawei LI, Xiaofei LU, Jie WU. Infrared dim small target tracking method based on Siamese network and Transformer [J]. Journal of Computer Applications, 2024, 44(2): 563-571. |
[14] | Wenjie YAN, Dongyue DANG. Broad quantum state tomography model based on adaptive feature extraction [J]. Journal of Computer Applications, 2024, 44(12): 3861-3866. |
[15] | Jie HUANG, Ruizi WU, Junli LI. Efficient adaptive robustness optimization algorithm for complex networks [J]. Journal of Computer Applications, 2024, 44(11): 3530-3539. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||