Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (7): 2065-2072.DOI: 10.11772/j.issn.1001-9081.2022071114
Special Issue: 第39届CCF中国数据库学术会议(NDBC 2022)
• The 39th CCF National Database Conference (NDBC 2022) • Previous Articles Next Articles
Shaoquan CHEN, Jianping CAI(), Lan SUN
Received:
2022-07-12
Revised:
2022-08-10
Accepted:
2022-08-15
Online:
2023-07-20
Published:
2023-07-10
Contact:
Jianping CAI
About author:
CHEN Shaoquan, born in 1996, M. S. candidate. His research interests include machine learning, differential privacy.通讯作者:
蔡剑平
作者简介:
陈少权(1996—),男,福建泉州人,硕士研究生,CCF学生会员,主要研究方向:机器学习、差分隐私;CLC Number:
Shaoquan CHEN, Jianping CAI, Lan SUN. Differential privacy generative adversarial network algorithm with dynamic gradient threshold clipping[J]. Journal of Computer Applications, 2023, 43(7): 2065-2072.
陈少权, 蔡剑平, 孙岚. 动态梯度阈值裁剪的差分隐私生成对抗网络算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2065-2072.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022071114
变量名 | 描述 | 默认值 |
---|---|---|
隐私偏差 | 0.000 01 | |
RDP约束 | — | |
隐私预算 | — | |
实验最大迭代次数 | 100 000 | |
学习率 | 0.000 2 | |
总的隐私预算 | — | |
噪声规模 | — | |
动态梯度裁剪阈值 | — |
Tab. 1 Setting of experimental parameters
变量名 | 描述 | 默认值 |
---|---|---|
隐私偏差 | 0.000 01 | |
RDP约束 | — | |
隐私预算 | — | |
实验最大迭代次数 | 100 000 | |
学习率 | 0.000 2 | |
总的隐私预算 | — | |
噪声规模 | — | |
动态梯度裁剪阈值 | — |
算法 | 描述 |
---|---|
DGC_DPGAN | 本文提出的先进行梯度扰动再进行梯度裁剪的动态梯度裁剪DPGAN算法 |
CLIP_DGC_DPGAN | 本文提出的先进行梯度裁剪再进行梯度扰动的动态梯度裁剪DPGAN算法 |
PPGAN[ | 满足差分隐私保护的固定梯度裁剪算法 |
DPCGAN[ | 将判别器优化过程进行分离的基于梯度扰动的固定梯度裁剪算法 |
GAN_NOISY_LAYER[ | 在判别器中添加服从高斯分布的随机噪声层满足差分隐私的隐私保护算法 |
DPACGAN[ | 自适应裁剪算法 |
Tab. 2 Description of experimental algorithms
算法 | 描述 |
---|---|
DGC_DPGAN | 本文提出的先进行梯度扰动再进行梯度裁剪的动态梯度裁剪DPGAN算法 |
CLIP_DGC_DPGAN | 本文提出的先进行梯度裁剪再进行梯度扰动的动态梯度裁剪DPGAN算法 |
PPGAN[ | 满足差分隐私保护的固定梯度裁剪算法 |
DPCGAN[ | 将判别器优化过程进行分离的基于梯度扰动的固定梯度裁剪算法 |
GAN_NOISY_LAYER[ | 在判别器中添加服从高斯分布的随机噪声层满足差分隐私的隐私保护算法 |
DPACGAN[ | 自适应裁剪算法 |
算法 | ||||
---|---|---|---|---|
Mnist | Fashion-Mnist | Mnist | Fashion-Mnist | |
真实值 | 9.36 | 9.21 | 9.36 | 9.21 |
NO PRIVACY | 8.54 | 7.97 | 8.54 | 7.97 |
DGC_DPGAN | 8.31 | 7.80 | 8.27 | 7.89 |
CLIP_DGC_DPGAN | 7.82 | 7.19 | 8.09 | 7.78 |
DPACGAN | 7.60 | 7.02 | 7.77 | 7.38 |
GAN_NOISY_LAYER | 6.50 | 4.72 | 6.84 | 6.39 |
PPGAN | 4.39 | 3.94 | 5.67 | 4.53 |
DPCGAN | 3.19 | 3.56 | 4.35 | 3.57 |
Tab. 3 Results of IS under (5,10-5)-DP and (10,10-5)-DP
算法 | ||||
---|---|---|---|---|
Mnist | Fashion-Mnist | Mnist | Fashion-Mnist | |
真实值 | 9.36 | 9.21 | 9.36 | 9.21 |
NO PRIVACY | 8.54 | 7.97 | 8.54 | 7.97 |
DGC_DPGAN | 8.31 | 7.80 | 8.27 | 7.89 |
CLIP_DGC_DPGAN | 7.82 | 7.19 | 8.09 | 7.78 |
DPACGAN | 7.60 | 7.02 | 7.77 | 7.38 |
GAN_NOISY_LAYER | 6.50 | 4.72 | 6.84 | 6.39 |
PPGAN | 4.39 | 3.94 | 5.67 | 4.53 |
DPCGAN | 3.19 | 3.56 | 4.35 | 3.57 |
算法 | ||||
---|---|---|---|---|
Mnist | Fashion-Mnist | Mnist | Fashion-Mnist | |
DGC_DPGAN | 0.84 | 0.77 | 0.86 | 0.77 |
CLIP_DGC_DPGAN | 0.80 | 0.76 | 0.82 | 0.76 |
DPACGAN | 0.79 | 0.73 | 0.79 | 0.75 |
GAN_NOISY_LAYER | 0.55 | 0.46 | 0.69 | 0.54 |
PPGAN | 0.74 | 0.70 | 0.76 | 0.72 |
DPCGAN | 0.42 | 0.33 | 0.59 | 0.33 |
Tab. 4 Results of SSIM under (5,10-5)-DP and (10,10-5)-DP
算法 | ||||
---|---|---|---|---|
Mnist | Fashion-Mnist | Mnist | Fashion-Mnist | |
DGC_DPGAN | 0.84 | 0.77 | 0.86 | 0.77 |
CLIP_DGC_DPGAN | 0.80 | 0.76 | 0.82 | 0.76 |
DPACGAN | 0.79 | 0.73 | 0.79 | 0.75 |
GAN_NOISY_LAYER | 0.55 | 0.46 | 0.69 | 0.54 |
PPGAN | 0.74 | 0.70 | 0.76 | 0.72 |
DPCGAN | 0.42 | 0.33 | 0.59 | 0.33 |
算法 | Mnist | Fashion-Mnist |
---|---|---|
真实值 | 99 | 91 |
NO PRIVACY | 96 | 73 |
DGC_DPGAN | 91 | 68 |
CLIP_DGC_DPGAN | 86 | 65 |
PPGAN | 74 | 45 |
GAN_NOISY_LAYER | 67 | 48 |
DPACGAN | 80 | 54 |
DPCGAN | 63 | 54 |
Tab. 5 CNN classification accuracy under (10,10-5)-DP
算法 | Mnist | Fashion-Mnist |
---|---|---|
真实值 | 99 | 91 |
NO PRIVACY | 96 | 73 |
DGC_DPGAN | 91 | 68 |
CLIP_DGC_DPGAN | 86 | 65 |
PPGAN | 74 | 45 |
GAN_NOISY_LAYER | 67 | 48 |
DPACGAN | 80 | 54 |
DPCGAN | 63 | 54 |
1 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014: 2672-2680. |
2 | CIREŞAN D C, GIUSTI A, GAMBARDELLA L M, et al. Deep neural networks segment neuronal membranes in electron microscopy images [C]// Proceedings of the 25th International Conferences on Neural Information Processing Systems — Volume 2. Red Hook, NY: Curran Associates Inc., 2012: 2843-2851. 10.1007/978-3-642-40763-5_51 |
3 | HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29 (6): 82-97. 10.1109/msp.2012.2205597 |
4 | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. 10.1109/iccv.2017.244 |
5 | HITAJ B, ATENIESE G, PEREZ-CRUZ F. Deep models under the GAN: information leakage from collaborative deep learning [C]// Proceedings of the 2017 ACM SIGSAC Conferences on Computer and Communications Security. New York: ACM, 2017: 603-618. 10.1145/3133956.3134012 |
6 | FREDRIKSON M, LANTZ E, JHA S, et al. Privacy in pharmacogenetics: an end-to-end case study of personalized warfarin dosing [C]// Proceedings of the 23rd USENIX Secure Symposium. Berkeley: USENIX Association, 2014: 17-32. |
7 | DWORK C. Differential privacy [C]// Proceedings of the 2016 International Colloquium on Automata, Languages and Programming, LNCS 4052. Berlin: Springer, 2016: 1-12. |
8 | XIE L Y, LIN K X, WANG S, et al. Differentially private generative adversarial network[EB/OL]. (2018-02-19) [2022-05-23]. . |
9 | TORKZADEHMAHANI R, KAIROUZ P, PATEN B. DP-CGAN: differentially private synthetic data and label generation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 98-104. 10.1109/cvprw.2019.00018 |
10 | MA C, LI J, DING M, et al. RDP-GAN: a Rényi-differential privacy based generative adversarial network[J]. IEEE Transactions on Dependable and Secure Computing, 2023 (Early Access): 1-15. 10.1109/tdsc.2022.3233580 |
11 | LIU Y, PENG J L, YU J J Q, et al. PPGAN: privacy-preserving generative adversarial network [C]// Proceedings of the IEEE 25th International Conference on Parallel and Distributed Systems. Piscataway: IEEE, 2019: 985-989. 10.1109/icpads47876.2019.00150 |
12 | TRIASTCYN A, FALTINGS B. Generating differentially private datasets using GANs[EB/OL]. (2018-03-08) [2022-05-23]. . 10.3390/a15070232 |
13 | ZHANG X Y, JI S L, WANG T. Differentially private releasing via deep generative model (technical report) [EB/OL]. (2018-03-25) [2022-05-23]. . |
14 | MIRONOY I. Rényi differential privacy [C]// Proceedings of the IEEE 30th Computer Security Foundations Symposium. Piscataway: IEEE, 2017: 263-275. 10.1109/csf.2017.11 |
15 | DWORK C, ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and Trends in Theoretical Computer Science, 2014, 9 (3/4): 211-407. |
16 | BU Z Q, DONG J S, LONG Q, et al. Deep learning with Gaussian differential privacy[J]. Harvard Data Science Review, 2020, 2 (3): No.10.1162/99608f92.cfc5dd25. |
17 | MIRONOV I, TALWAR K, ZHANG L. Rényi differential privacy of the sampled Gaussian mechanism[EB/OL]. (2019-08-28) [2022-05-23]. . 10.1109/csf.2017.11 |
18 | ASOODEH S, LIAO J C, CALMON F P, et al. Three variants of differential privacy: lossless conversion and applications[J]. IEEE Journal on Selected Areas in Information Theory, 2021, 2 (1): 208-222. 10.1109/jsait.2021.3054692 |
19 | ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy [C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 308-318. 10.1145/2976749.2978318 |
20 | LIN Y, BAO L Y, LI Z M H, et al. Differential privacy protection over deep learning: an investigation of its impacted factors[J]. Computers and Security, 2020, 99: No.102061. 10.1016/j.cose.2020.102061 |
21 | 郭鹏, 钟尚平, 陈开志, 等. 差分隐私GAN梯度裁剪阈值的自适应选取方法[J]. 网络与信息安全学报, 2018, 4 (5): 10-20. 10.11959/j.issn.2096-109x.2018041 |
GUO P, ZHONG S P, CHEN K Z, et al. Adaptive selection method of differential privacy GAN gradient clipping thresholds[J]. Chinese Journal of Network and Information Security, 2018, 4 (5): 10-20. 10.11959/j.issn.2096-109x.2018041 |
[1] | Zhizheng ZHANG, Xiaojian ZHANG, Junqing WANG, Guanghui FENG. Federated spatial data publication method with differential privacy and secure aggregation [J]. Journal of Computer Applications, 2024, 44(9): 2777-2784. |
[2] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[3] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[4] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[5] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[6] | Peng PENG, Zhiwei NI, Xuhui ZHU, Qian CHEN. Interference trajectory publication based on improved glowworm swarm algorithm and differential privacy [J]. Journal of Computer Applications, 2024, 44(2): 496-503. |
[7] | Rui GAO, Xuebin CHEN, Zucuan ZHANG. Dynamic social network privacy publishing method for partial graph updating [J]. Journal of Computer Applications, 2024, 44(12): 3831-3838. |
[8] | Xuebin CHEN, Liyang SHAN, Rumin GUO. Review of histogram publication methods based on differential privacy [J]. Journal of Computer Applications, 2024, 44(10): 3114-3121. |
[9] | Xueran XU, Geng YANG, Yuxian HUANG. Differential privacy clustering algorithm in horizontal federated learning [J]. Journal of Computer Applications, 2024, 44(1): 217-222. |
[10] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[11] | Anyang LIU, Huaici ZHAO, Wenlong CAI, Zechao XU, Ruideng XIE. Adaptive image deblurring generative adversarial network algorithm based on active discrimination mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2288-2294. |
[12] | Shuo HUANG, Yanhui LI, Jianqiu CAO. PrivSPM: frequent sequential pattern mining algorithm under local differential privacy [J]. Journal of Computer Applications, 2023, 43(7): 2057-2064. |
[13] | Xin JIN, Yangchuan LIU, Yechen ZHU, Zijian ZHANG, Xin GAO. Sinogram inpainting for sparse-view cone-beam computed tomography image reconstruction based on residual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2023, 43(6): 1950-1957. |
[14] | Jiagao WU, Shiwen ZHANG, Yudong JIANG, Linfeng LIU. Social-interaction GAN for pedestrian trajectory prediction based on state-refinement long short-term memory and attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1565-1570. |
[15] | Jinwen GUO, Xinghua MA, Gongning LUO, Wei WANG, Yang CAO, Kuanquan WANG. Guidewire artifact removal method of structure-enhanced IVOCT based on Transformer [J]. Journal of Computer Applications, 2023, 43(5): 1596-1605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||