Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3595-3602.DOI: 10.11772/j.issn.1001-9081.2023111575
• Multimedia computing and computer simulation • Previous Articles Next Articles
Lin WANG1,2, Jingliang LIU2(), Wuwei WANG3
Received:
2023-11-16
Revised:
2023-12-22
Accepted:
2023-12-22
Online:
2024-01-04
Published:
2024-11-10
Contact:
Jingliang LIU
About author:
WANG Lin, born in 1963, Ph. D., professor. His research interests include computer vision.Supported by:
通讯作者:
刘景亮
作者简介:
王林(1963—),男,江苏东台人,教授,博士,主要研究方向:计算机视觉基金资助:
CLC Number:
Lin WANG, Jingliang LIU, Wuwei WANG. Small target detection method in UAV images based on fusion of dilated convolution and Transformer[J]. Journal of Computer Applications, 2024, 44(11): 3595-3602.
王林, 刘景亮, 王无为. 基于空洞卷积融合Transformer的无人机图像小目标检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3595-3602.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023111575
实验 序号 | SIBM空洞率 | FDFPN空洞率 | mAP/% | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | {1,2,3} | {1,3,5} | {1,5,7} | ||
1 | √ | × | × | √ | × | × | 26.7 |
2 | × | √ | × | × | √ | × | 27.0 |
3 | × | × | √ | × | × | √ | 26.3 |
4 | × | √ | × | √ | × | × | 26.8 |
5 | × | √ | × | × | × | √ | 26.5 |
Tab. 1 Comparison of results with different dilation rates
实验 序号 | SIBM空洞率 | FDFPN空洞率 | mAP/% | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | {1,2,3} | {1,3,5} | {1,5,7} | ||
1 | √ | × | × | √ | × | × | 26.7 |
2 | × | √ | × | × | √ | × | 27.0 |
3 | × | × | √ | × | × | √ | 26.3 |
4 | × | √ | × | √ | × | × | 26.8 |
5 | × | √ | × | × | × | √ | 26.5 |
算法 | SIBM | FDFPN | 线性插值 | mAP/% | APS/% | APM/% | APL/% | Params/MB |
---|---|---|---|---|---|---|---|---|
Swin‑T | × | × | × | 23.1 | 15.8 | 33.7 | 36.2 | 38.6 |
A | √ | × | × | 24.3 | 16.9 | 34.4 | 36.7 | 39.5 |
B | × | √ | × | 24.6 | 17.1 | 35.6 | 38.2 | 42.1 |
C | √ | √ | × | 27.0 | 19.4 | 37.0 | 41.3 | 47.4 |
D | √ | √ | √ | 27.2 | 19.5 | 37.4 | 41.4 | 47.4 |
Tab.2 Comparison of ablation experimental results
算法 | SIBM | FDFPN | 线性插值 | mAP/% | APS/% | APM/% | APL/% | Params/MB |
---|---|---|---|---|---|---|---|---|
Swin‑T | × | × | × | 23.1 | 15.8 | 33.7 | 36.2 | 38.6 |
A | √ | × | × | 24.3 | 16.9 | 34.4 | 36.7 | 39.5 |
B | × | √ | × | 24.6 | 17.1 | 35.6 | 38.2 | 42.1 |
C | √ | √ | × | 27.0 | 19.4 | 37.0 | 41.3 | 47.4 |
D | √ | √ | √ | 27.2 | 19.5 | 37.4 | 41.4 | 47.4 |
算法 | AP/% | mAP/% | AP50/% | AP75/% | 帧率/(frame·s-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
行人 | 人 | 自行车 | 汽车 | 货车 | 卡车 | 三轮车 | 遮阳篷三轮车 | 公交车 | 摩托车 | |||||
SSD[ | 13.0 | 7.9 | 3.7 | 45.3 | 19.7 | 11.4 | 9.2 | 4.2 | 27.7 | 12.8 | 15.5 | 27.3 | 15.1 | 37.0 |
FPN[ | 14.8 | 9.4 | 5.5 | 42.4 | 23.6 | 16.3 | 12.2 | 7.0 | 32.6 | 13.4 | 17.7 | 33.4 | 15.9 | 24.0 |
IterDeT[ | 16.5 | 12.1 | 6.8 | 48.7 | 28.4 | 19.0 | 11.4 | 7.2 | 35.4 | 18.7 | 20.4 | 36.8 | 20.3 | 11.2 |
Faster R-CNN[ | 20.9 | 14.8 | 7.3 | 51.0 | 30.2 | 19.8 | 14.0 | 8.1 | 35.5 | 21.1 | 22.3 | 39.0 | 21.7 | 25.4 |
YOLOv5s[ | 16.2 | 8.2 | 7.2 | 50.6 | 31.4 | 27.9 | 14.4 | 14.1 | 41.4 | 15.7 | 22.7 | 40.8 | 22.5 | 90.0 |
Swin‑T | 23.0 | 14.0 | 9.3 | 49.6 | 30.2 | 22.8 | 16.0 | 6.7 | 37.4 | 22.3 | 23.1 | 42.5 | 22.0 | 21.3 |
DDETR[ | 25.5 | 14.1 | 10.6 | 53.0 | 36.9 | 25.2 | 15.3 | 6.7 | 38.3 | 22.4 | 24.8 | 42.7 | 25.1 | 19.7 |
SyNet[ | 26.2 | 15.3 | 11.1 | 50.2 | 33.0 | 23.9 | 16.4 | 8.6 | 39.1 | 26.9 | 25.1 | 48.4 | 26.2 | 16.0 |
Swin-Det | 28.8 | 18.6 | 12.4 | 54.7 | 35.4 | 25.1 | 19.2 | 9.1 | 42.2 | 26.8 | 27.2 | 50.7 | 28.3 | 18.4 |
Tab.3 Comparison of detection results of different algorithms
算法 | AP/% | mAP/% | AP50/% | AP75/% | 帧率/(frame·s-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
行人 | 人 | 自行车 | 汽车 | 货车 | 卡车 | 三轮车 | 遮阳篷三轮车 | 公交车 | 摩托车 | |||||
SSD[ | 13.0 | 7.9 | 3.7 | 45.3 | 19.7 | 11.4 | 9.2 | 4.2 | 27.7 | 12.8 | 15.5 | 27.3 | 15.1 | 37.0 |
FPN[ | 14.8 | 9.4 | 5.5 | 42.4 | 23.6 | 16.3 | 12.2 | 7.0 | 32.6 | 13.4 | 17.7 | 33.4 | 15.9 | 24.0 |
IterDeT[ | 16.5 | 12.1 | 6.8 | 48.7 | 28.4 | 19.0 | 11.4 | 7.2 | 35.4 | 18.7 | 20.4 | 36.8 | 20.3 | 11.2 |
Faster R-CNN[ | 20.9 | 14.8 | 7.3 | 51.0 | 30.2 | 19.8 | 14.0 | 8.1 | 35.5 | 21.1 | 22.3 | 39.0 | 21.7 | 25.4 |
YOLOv5s[ | 16.2 | 8.2 | 7.2 | 50.6 | 31.4 | 27.9 | 14.4 | 14.1 | 41.4 | 15.7 | 22.7 | 40.8 | 22.5 | 90.0 |
Swin‑T | 23.0 | 14.0 | 9.3 | 49.6 | 30.2 | 22.8 | 16.0 | 6.7 | 37.4 | 22.3 | 23.1 | 42.5 | 22.0 | 21.3 |
DDETR[ | 25.5 | 14.1 | 10.6 | 53.0 | 36.9 | 25.2 | 15.3 | 6.7 | 38.3 | 22.4 | 24.8 | 42.7 | 25.1 | 19.7 |
SyNet[ | 26.2 | 15.3 | 11.1 | 50.2 | 33.0 | 23.9 | 16.4 | 8.6 | 39.1 | 26.9 | 25.1 | 48.4 | 26.2 | 16.0 |
Swin-Det | 28.8 | 18.6 | 12.4 | 54.7 | 35.4 | 25.1 | 19.2 | 9.1 | 42.2 | 26.8 | 27.2 | 50.7 | 28.3 | 18.4 |
1 | LIANG J, CHEN X, LIANG C, et al. A detection approach for late-autumn shoots of litchi based on Unmanned Aerial Vehicle (UAV) remote sensing[J]. Computers and Electronics in Agriculture, 2023, 204: No.107535. |
2 | SILVA L A, LEITHARDT V R Q, BATISTA V F L, et al. Automated road damage detection using UAV images and deep learning techniques[J]. IEEE Access, 2023, 11: 62918-62931. |
3 | XUE Y, JIN G, SHEN T, et al. Template-guided frequency attention and adaptive cross-entropy loss for UAV visual tracking[J]. Chinese Journal of Aeronautics, 2023, 36(9): 299-312. |
4 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. |
5 | 刘英杰,杨风暴,胡鹏. 基于Cascade R-CNN的并行特征金字塔网络无人机航拍图像目标检测算法[J]. 激光与光电子学进展, 2020, 57(20): No.201505. |
LIU Y J, YANG F B, HU P. Parallel FPN algorithm based on Cascade R-CNN for object detection form UAV aerial images[J]. Laser and Optoelectronics Progress, 2020, 57(20): No.201505. | |
6 | HONG S, KANG S, CHO D. Patch-level augmentation for object detection in aerial images[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2019: 127-134. |
7 | LIANG B, SU J, FENG K, et al. Cross-layer triple-branch parallel fusion network for small object detection in UAV images[J]. IEEE Access, 2023, 11: 39738-39750. |
8 | QIAO S, CHEN L C, YUILLE A. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10208-10219. |
9 | BEERY S, WU G, RATHOD V, et al. Context R-CNN: long term temporal context for per-camera object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13072-13082. |
10 | 田婷婷,杨军. 基于多尺度特征融合网络的遥感影像目标检测[J]. 激光与光电子学进展, 2022, 59(16): No.1628003. |
TIAN T T, YANG J. Object detection for remote sensing image based on multiscale feature fusion network[J]. Laser and Optoelectronics Progress, 2022, 59(16): No.1628003. | |
11 | YANG X, YANG J, YAN J, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8231-8240. |
12 | 田永林,王雨桐,王建功,等. 视觉Transformer研究的关键问题:现状及展望[J]. 自动化学报, 2022, 48(4):957-979. |
TIAN Y L, WANG Y T, WANG J G, et al. Key problems and progress of vision Transformers: the state of the art and prospects[J]. Acta Automatica Sinica, 2022, 48(4): 957-979. | |
13 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03) [2022-10-22].. |
14 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. |
15 | XU Y, YANG Y, ZHANG L. DeMT: deformable mixer Transformer for multi-task learning of dense prediction[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2023: 3072-3080. |
16 | HE X, ZHOU Y, ZHAO J, et al. Swin Transformer embedding UNet for remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.4408715. |
17 | JIANG X, WU Y. Remote sensing object detection based on convolution and Swin Transformer[J]. IEEE Access, 2023, 11: 38643-38656. |
18 | 付苗苗,邓淼磊,张德贤. 基于深度学习和Transformer的目标检测算法[J]. 计算机工程与应用, 2023, 59(1):37-48. |
FU M M, DENG M L, ZHANG D X. Object detection algorithms based on deep learning and Transformer[J]. Computer Engineering and Applications, 2023, 59(1): 37-48. | |
19 | WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1451-1460. |
20 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
21 | RUKHOVICH D, SOFIIUK K, GALEEV D, et al. IterDet: iterative scheme for object detection in crowded environments[C]// Proceedings of the 2020 Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), LNCS 12644. Cham: Springer, 2021: 344-354. |
22 | XU C, WANG J, YANG W, et al. RFLA: Gaussian receptive field based label assignment for tiny object detection[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13669. Cham: Springer, 2022: 526-543. |
23 | 徐坚,谢正光,李洪均. 特征平衡的无人机航拍图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6):196-203. |
XU J, XIE Z G, LI H J. Feature-balanced UAV aerial image target detection algorithm[J]. Computer Engineering and Applications, 2023, 59(6): 196-203. | |
24 | ZHU X, SU W, LU L, et al. Deformable DETR: deformable Transformers for end-to-end object detection[EB/OL]. [2022-11-14].. |
25 | ALBABA B M, OZER S. SyNet: an ensemble network for object detection in UAV images[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 10227-10234. |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[3] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
[4] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[5] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[6] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[7] | Jun FENG, Jiankang BI, Yiru HUO, Jiakuan LI. PIPNet: lightweight asphalt pavement crack image segmentation network [J]. Journal of Computer Applications, 2024, 44(5): 1520-1526. |
[8] | Guijin HAN, Xinyuan ZHANG, Wentao ZHANG, Ya HUANG. Self-supervised image registration algorithm based on multi-feature fusion [J]. Journal of Computer Applications, 2024, 44(5): 1597-1604. |
[9] | Xin LI, Qiao MENG, Junyi HUANGFU, Lingchen MENG. YOLOv5 multi-attribute classification based on separable label collaborative learning [J]. Journal of Computer Applications, 2024, 44(5): 1619-1628. |
[10] | Xinyuan YOU, Heng WANG. Monaural speech enhancement based on gated dilated convolutional recurrent network [J]. Journal of Computer Applications, 2024, 44(4): 1317-1324. |
[11] | Yuliang ZHENG, Yunhua CHEN, Weijie BAI, Pinghua CHEN. Vehicle target detection by fusing event data and image frames [J]. Journal of Computer Applications, 2024, 44(3): 931-937. |
[12] | Zhanjun JIANG, Baijing WU, Long MA, Jing LIAN. Faster-RCNN water-floating garbage recognition based on multi-scale feature and polarized self-attention [J]. Journal of Computer Applications, 2024, 44(3): 938-944. |
[13] | Ning WU, Yangyang LUO, Huajie XU. Semantic segmentation method for remote sensing images based on multi-scale feature fusion [J]. Journal of Computer Applications, 2024, 44(3): 737-744. |
[14] | Xinye LI, Yening HOU, Yinghui KONG, Zhiqi YAN. Few-shot object detection combining feature fusion and enhanced attention [J]. Journal of Computer Applications, 2024, 44(3): 745-751. |
[15] | Zongze JIA, Pengfei GAO, Yinglong MA, Xiaofeng LIU, Haixin XIA. Multi-feature fusion attention-based hierarchical classification method for dialogue act [J]. Journal of Computer Applications, 2024, 44(3): 715-721. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||