Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (7): 2041-2046.DOI: 10.11772/j.issn.1001-9081.2023070970
• Artificial intelligence • Previous Articles Next Articles
Hao CHAO, Shuqi FENG(), Yongli LIU
Received:
2023-07-19
Revised:
2023-09-25
Accepted:
2023-09-26
Online:
2023-10-26
Published:
2024-07-10
Contact:
Shuqi FENG
About author:
CHAO Hao, born in 1981, Ph. D., associate professor. His research interests include pattern recognition, affective calculation, speech recognition.Supported by:
通讯作者:
封舒琪
作者简介:
晁浩(1981—)男,河南许昌人,副教授,博士,CCF会员,主要研究方向:模式识别、情感计算、语音识别;基金资助:
CLC Number:
Hao CHAO, Shuqi FENG, Yongli LIU. Convolutional recurrent neural network optimized by multiple context vectors in EEG-based emotion recognition[J]. Journal of Computer Applications, 2024, 44(7): 2041-2046.
晁浩, 封舒琪, 刘永利. 脑电情感识别中多上下文向量优化的卷积递归神经网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2041-2046.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023070970
网络模型 | 单个网络与集成网络 | 唤醒维度 | 效价维度 | ||
---|---|---|---|---|---|
准确率 | F1分数 | 准确率 | F1分数 | ||
G1 | CRNN1 | 75.97 | 76.21 | 74.53 | 75.16 |
CR-MCV1 | 78.05 | 80.36 | 78.21 | 80.13 | |
G2 | CRNN2 | 76.11 | 75.57 | 78.14 | 77.91 |
CR-MCV2 | 82.65 | 82.83 | 82.13 | 82.66 | |
G3 | CRNN3 | 72.32 | 72.01 | 73.07 | 73.41 |
CR-MCV3 | 80.23 | 81.22 | 81.39 | 82.51 | |
G4 | CRNN4 | 82.17 | 82.51 | 81.28 | 81.87 |
CR-MCV4 | 88.09 | 90.31 | 89.31 | 90.11 |
Tab. 1 Performance comparison of single network and ensemble network
网络模型 | 单个网络与集成网络 | 唤醒维度 | 效价维度 | ||
---|---|---|---|---|---|
准确率 | F1分数 | 准确率 | F1分数 | ||
G1 | CRNN1 | 75.97 | 76.21 | 74.53 | 75.16 |
CR-MCV1 | 78.05 | 80.36 | 78.21 | 80.13 | |
G2 | CRNN2 | 76.11 | 75.57 | 78.14 | 77.91 |
CR-MCV2 | 82.65 | 82.83 | 82.13 | 82.66 | |
G3 | CRNN3 | 72.32 | 72.01 | 73.07 | 73.41 |
CR-MCV3 | 80.23 | 81.22 | 81.39 | 82.51 | |
G4 | CRNN4 | 82.17 | 82.51 | 81.28 | 81.87 |
CR-MCV4 | 88.09 | 90.31 | 89.31 | 90.11 |
网络模型 | 注意力头数 | 唤醒维度 | 效价维度 | ||
---|---|---|---|---|---|
准确率 | F1分数 | 准确率 | F1分数 | ||
M1 | 1 | 85.17 | 85.81 | 85.03 | 85.44 |
M2 | 2 | 85.12 | 86.33 | 84.45 | 85.01 |
M4 | 4 | 85.31 | 85.01 | 81.72 | 81.02 |
M8 | 8 | 88.09 | 90.31 | 89.30 | 90.11 |
M16 | 16 | 87.34 | 87.61 | 87.55 | 87.22 |
Tab. 2 Performance comparison of different attention heads in arousal dimension and valence dimension
网络模型 | 注意力头数 | 唤醒维度 | 效价维度 | ||
---|---|---|---|---|---|
准确率 | F1分数 | 准确率 | F1分数 | ||
M1 | 1 | 85.17 | 85.81 | 85.03 | 85.44 |
M2 | 2 | 85.12 | 86.33 | 84.45 | 85.01 |
M4 | 4 | 85.31 | 85.01 | 81.72 | 81.02 |
M8 | 8 | 88.09 | 90.31 | 89.30 | 90.11 |
M16 | 16 | 87.34 | 87.61 | 87.55 | 87.22 |
网络模型 | 上下文向量 | 唤醒维度 | 效价维度 | ||
---|---|---|---|---|---|
准确率 | F1分数 | 准确率 | F1分数 | ||
CRNN | 无 | 80.17 | 81.50 | 81.28 | 81.87 |
Mm8 | 81.63 | 81.12 | 82.23 | 81.65 | |
Ml8 | 83.91 | 83.33 | 85.49 | 85.01 | |
Mf8 | 84.53 | 85.98 | 86.95 | 88.56 | |
CR-MCV | 88.09 | 90.31 | 89.30 | 90.11 |
Tab. 3 Performance comparison of different context vectors in arousal dimension and valence dimension
网络模型 | 上下文向量 | 唤醒维度 | 效价维度 | ||
---|---|---|---|---|---|
准确率 | F1分数 | 准确率 | F1分数 | ||
CRNN | 无 | 80.17 | 81.50 | 81.28 | 81.87 |
Mm8 | 81.63 | 81.12 | 82.23 | 81.65 | |
Ml8 | 83.91 | 83.33 | 85.49 | 85.01 | |
Mf8 | 84.53 | 85.98 | 86.95 | 88.56 | |
CR-MCV | 88.09 | 90.31 | 89.30 | 90.11 |
1 | FIORINI L, MANCIOPPI, SEMERARO F, et al. Unsupervised emotional state classification through physiological parameters for social robotics applications [J]. Knowledge-Based Systems, 2020, 190: 105217. |
2 | WEN YEAN C, WAN AHMAD W K, MUSTAFA W A, et al. An emotion assessment of stroke patients by using bispectrum features of EEG signals [J]. Brain Sciences, 2020, 10(10): 672. |
3 | WANG H, WU X, YAO L, et al. Identifying cortical brain directed connectivity networks from high-density EEG for emotion recognition [J]. IEEE Transactions on Affective Computing, 2022, 13(3): 1489-1500. |
4 | PEREIRA E T, GOMES H M, VELOSO L R, et al. Empirical evidence relating EEG signal duration to emotion classification performance [J]. IEEE Transactions on Affective Computing, 2021, 12(1): 154-164. |
5 | PANDEY P, SEEJA K R. Subject independent emotion recognition from EEG using VMD and deep learning [J]. Journal of King Saud University — Computer and Information Sciences, 2022, 34(5): 1730-1738. |
6 | HU W, ZHANG Z, ZHAO H, et al. EEG microstate correlates of emotion dynamics and stimulation content during video watching [J]. Cerebral Cortex, 2023, 33(3): 523-542. |
7 | YANG H, HUANG S, GUO S, et al. Multi-classifier fusion based on MI-SFFS for cross-subject emotion recognition [J]. Entropy, 2022, 24(5): 705. |
8 | THAMMASAN N, MORIYAMA K, K-I FUKUI, et al. Familiarity effects in EEG-based emotion recognition [J]. Brain Informatics, 2017, 4(1): 39-50. |
9 | DANG W-D, LV D-M, LI R-M, et al. Multilayer network-based CNN model for emotion recognition [J]. International Journal of Bifurcation and Chaos, 2022, 32(1): 2250011. |
10 | JIA J, ZHANG B, LV H, et al. CR-GCN: channel-relationships-based graph convolutional network for EEG emotion recognition [J]. Brain Sciences, 2022, 12(8): 987. |
11 | LI Q, LIU Y, SHANG Y, et al. Deep sparse autoencoder and recursive neural network for EEG emotion recognition [J]. Entropy, 2022, 24(9): 1187. |
12 | KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis; using physiological signals [J]. IEEE Transactions on Affective Computing, 2011, 3(1): 18-31. |
13 | ZHAO Y, CHEN D. Expression EEG multimodal emotion recognition method based on the bidirectional LSTM and attention mechanism [J]. Computational and Mathematical Methods in Medicine, 2021, 2021: 9967592. |
14 | JIANG H, JIAO R, WANG Z, et al. Construction and analysis of emotion computing model based on LSTM [J]. Complexity, 2021, 2021: 8897105. |
15 | CHANG H, ZONG Y, ZHENG W, et al. Depression assessment method: an EEG emotion recognition framework based on spatiotemporal neural network [J]. Frontiers in Psychiatry, 2021, 12: 837149. |
16 | IYER A, DAS S S, TEOTIA R, et al. CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings [J]. Multimedia Tools and Applications, 2023, 82(4): 4883-4896. |
17 | TSIOURIS Κ Μ, PEZOULAS V C, ZERVAKIS M, et al. A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals [J]. Computers in Biology and Medicine, 2018, 99: 24-37. |
18 | DU X, MA C, ZHANG G, et al. An efficient LSTM network for emotion recognition from multichannel EEG signals [J]. IEEE Transactions on Affective Computing, 2022, 13(3): 1528-1540. |
19 | LI C, WANG B, ZHANG S L, et al. Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism [J]. Computers in Biology and Medicine, 2022, 143: 105303. |
20 | LIU S, WANG X, ZHAO L, et al. 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition [J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(11): 5321-5331. |
21 | HAJ-ALI H, ANDERSON A K, KRON A. Comparing three models of arousal in the human brain [J]. Social Cognitive and Affective Neuroscience, 2020, 15(1): 1-11. |
22 | HOUSSEIN E H, HAMMAD A, ALI A A. Human emotion recognition from EEG-based brain-computer interface using machine learning: a comprehensive review [J]. Neural Computing and Applications, 2022, 34: 12527-12557. |
23 | HJORTH B. EEG analysis based on time domain properties [J]. Electroencephalography and Clinical Neurophysiology, 1970, 29(3): 306-310. |
24 | FRANTZIDIS C A, BRATSAS C, PAPADELIS C L, et al. Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli [J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(3): 589-597. |
25 | CHAO H, DONG L. Emotion recognition using three-dimensional feature and convolutional neural network from multichannel EEG signals [J]. IEEE Sensors Journal, 2021, 21(2): 2024-2034. |
26 | XING X, LI Z, XU T, et al. SAE+ LSTM: a new framework for emotion recognition from multi-channel EEG [J]. Frontiers in Neurorobotics, 2019, 13: 37. |
27 | WANG Z, GU T, ZHU Yet al. FLDNet: frame-level distilling neural network for EEG emotion recognition [J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(7): 2533-2544. |
28 | JOSHI V M, GHONGADE R B. EEG based emotion detection using fourth order spectral moment and deep learning [J]. Biomedical Signal Processing and Control, 2021, 68: 102755. |
29 | WANG Z, WANG Y, ZHANG J, et al. Spatial-temporal feature fusion neural network for EEG-based emotion recognition [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2507212. |
30 | V-R XEFTERIS, TSANOUSA A, GEORGAKOPOULOU N, et al. Graph theoretical analysis of EEG functional connectivity patterns and fusion with physiological signals for emotion recognition [J]. Sensors, 2022, 22(21): 8198. |
31 | GAO Y, FU X, OUYANG T, et al. EEG-GCN: spatio-temporal and self-adaptive graph convolutional networks for single and multi-view EEG-based emotion recognition [J]. IEEE Signal Processing Letters, 2022, 29: 1574-1578. |
[1] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[2] | Caiqin WANG, Yuhao ZHOU, Shunxiang ZHANG, Yanhui WANG, Xiaolong WANG. Aspect-opinion pair extraction of new energy vehicle complaint text based on context enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2430-2436. |
[3] | Juxiang ZHOU, Jinsheng LIU, Jianhou GAN, Di WU, Zijie LI. Classroom speech emotion recognition method based on multi-scale temporal-aware network [J]. Journal of Computer Applications, 2024, 44(5): 1636-1643. |
[4] | Tian CHEN, Conghu CAI, Xiaohui YUAN, Beibei LUO. Multimodal emotion recognition method based on multiscale convolution and self-attention feature fusion [J]. Journal of Computer Applications, 2024, 44(2): 369-376. |
[5] | Yushan JIANG, Yangsen ZHANG. Large language model-driven stance-aware fact-checking [J]. Journal of Computer Applications, 2024, 44(10): 3067-3073. |
[6] | Mu LI, Yuheng YANG, Xizheng KE. Emotion recognition model based on hybrid-mel gama frequency cross-attention transformer modal [J]. Journal of Computer Applications, 2024, 44(1): 86-93. |
[7] | Kai ZHANG, Zhengchu QIN, Yue LIU, Xinyi QIN. Multi-learning behavior collaborated knowledge tracing model [J]. Journal of Computer Applications, 2023, 43(5): 1422-1429. |
[8] | Lubao LI, Tian CHEN, Fuji REN, Beibei LUO. Bimodal emotion recognition method based on graph neural network and attention [J]. Journal of Computer Applications, 2023, 43(3): 700-705. |
[9] | Yu WANG, Yubo YUAN, Yi GUO, Jiajie ZHANG. Sentiment boosting model for emotion recognition in conversation text [J]. Journal of Computer Applications, 2023, 43(3): 706-712. |
[10] | Yang WANG, Hongliang FU, Huawei TAO, Jing YANG, Yue XIE, Li ZHAO. Cross-corpus speech emotion recognition based on decision boundary optimized domain adaptation [J]. Journal of Computer Applications, 2023, 43(2): 374-379. |
[11] | Anqin ZHANG, Xiaohui WANG. Power battery safety warning based on time series anomaly detection [J]. Journal of Computer Applications, 2023, 43(12): 3799-3805. |
[12] | Hong YANG, He ZHANG, Shaoning JIN. Human pose transfer model combining convolution and multi-head attention [J]. Journal of Computer Applications, 2023, 43(11): 3403-3410. |
[13] | Dan XU, Hongfang GONG, Rongrong LUO. Aspect sentiment analysis with aspect item and context representation [J]. Journal of Computer Applications, 2023, 43(10): 3086-3092. |
[14] | Lei YANG, Hongdong ZHAO, Kuaikuai YU. End-to-end speech emotion recognition based on multi-head attention [J]. Journal of Computer Applications, 2022, 42(6): 1869-1875. |
[15] | Zhijin LI, Hua LAI, Yonghua WEN, Shengxiang GAO. Neural machine translation integrating bidirectional-dependency self-attention mechanism [J]. Journal of Computer Applications, 2022, 42(12): 3679-3685. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||