Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2326-2333.DOI: 10.11772/j.issn.1001-9081.2023081062
• Artificial intelligence • Previous Articles Next Articles
Yingjun ZHANG1, Niuniu LI1(), Binhong XIE1, Rui ZHANG1, Wangdong LU2
Received:
2023-08-07
Revised:
2023-10-10
Accepted:
2023-10-17
Online:
2023-12-18
Published:
2024-08-10
Contact:
Niuniu LI
About author:
ZHANG Yingjun, born in 1969, M. S., professor-level seniorengineer. His research interests include intelligent software, softwarearchitecture.Supported by:
通讯作者:
李牛牛
作者简介:
张英俊(1969—),男,山西河津人,教授级高级工程师,硕士,主要研究方向:智能化软件、软件体系结构基金资助:
CLC Number:
Yingjun ZHANG, Niuniu LI, Binhong XIE, Rui ZHANG, Wangdong LU. Semi-supervised object detection framework guided by curriculum learning[J]. Journal of Computer Applications, 2024, 44(8): 2326-2333.
张英俊, 李牛牛, 谢斌红, 张睿, 陆望东. 课程学习指导下的半监督目标检测框架[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2326-2333.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081062
Unbiased-teacher/% | STAC/% | CrossRectify/% | ||||
---|---|---|---|---|---|---|
BS | PS | BS | PS | BS | PS | |
0.50 | 80.58 | 80.63 | 76.13 | 76.71 | 80.69 | 80.73 |
0.70 | 81.30 | 81.52 | 77.65 | 77.80 | 81.90 | 82.02 |
0.75 | 81.49 | 81.76 | 78.02 | 78.21 | 82.44 | 82.63 |
0.80 | 81.34 | 81.48 | 77.72 | 77.91 | 81.81 | 81.98 |
0.90 | 80.57 | 80.54 | 76.28 | 77.11 | 80.78 | 80.94 |
Tab. 1 AP50 comparison with different ? on Pascal VOC dataset
Unbiased-teacher/% | STAC/% | CrossRectify/% | ||||
---|---|---|---|---|---|---|
BS | PS | BS | PS | BS | PS | |
0.50 | 80.58 | 80.63 | 76.13 | 76.71 | 80.69 | 80.73 |
0.70 | 81.30 | 81.52 | 77.65 | 77.80 | 81.90 | 82.02 |
0.75 | 81.49 | 81.76 | 78.02 | 78.21 | 82.44 | 82.63 |
0.80 | 81.34 | 81.48 | 77.72 | 77.91 | 81.81 | 81.98 |
0.90 | 80.57 | 80.54 | 76.28 | 77.11 | 80.78 | 80.94 |
算法 | 标注 数据集 | 无标注 数据集 | 对照组 | 实验组BS | 实验组PS |
---|---|---|---|---|---|
CSD[ | VOC07 | VOC12 | 77.50 | 78.15 | 78.58 |
STAC[ | 77.50 | 78.02 | 78.21 | ||
co-rectify[ | 79.20 | 79.86 | 80.13 | ||
Unbiased_teacher[ | 80.50 | 81.49 | 81.76 | ||
CrossRectify[ | 81.56 | 82.44 | 82.63 |
Tab. 2 Experimental results of Faster-RCNN-FPN based models (ResNet-50 backbone network) on Pascal VOC dataset (AP50)
算法 | 标注 数据集 | 无标注 数据集 | 对照组 | 实验组BS | 实验组PS |
---|---|---|---|---|---|
CSD[ | VOC07 | VOC12 | 77.50 | 78.15 | 78.58 |
STAC[ | 77.50 | 78.02 | 78.21 | ||
co-rectify[ | 79.20 | 79.86 | 80.13 | ||
Unbiased_teacher[ | 80.50 | 81.49 | 81.76 | ||
CrossRectify[ | 81.56 | 82.44 | 82.63 |
组别 | 算法 | 不同监督程度的AP50:90值/% | |||
---|---|---|---|---|---|
1% | 2% | 5% | 10% | ||
对照组 | CSD[ | 10.51±0.06 | 13.93±0.12 | 18.63±0.07 | 22.46±0.08 |
STAC[ | 13.97±0.35 | 18.25±0.25 | 24.38±0.12 | 28.64±0.21 | |
co-rectify[ | 18.05±0.15 | 22.45±0.15 | 26.75±0.05 | 30.40±0.05 | |
Unbiased_teacher [ | 20.75±0.12 | 24.30±0.07 | 28.27±0.11 | 31.50±0.10 | |
CrossRectify[ | 21.90±0.11 | 26.70±0.07 | 31.70±0.04 | 34.89±0.07 | |
实验组BS | CSD[ | 11.45±0.13 | 15.03±0.09 | 19.59±0.06 | 23.58±0.10 |
STAC[ | 14.47±0.28 | 18.74±0.36 | 24.88±0.15 | 29.22±0.11 | |
co-rectify[ | 18.86±0.06 | 23.21±0.09 | 27.63±0.12 | 31.35±0.08 | |
Unbiased_teacher [ | 21.73±0.04 | 25.31±0.12 | 29.39±0.25 | 32.62±0.06 | |
CrossRectify[ | 22.86±0.20 | 27.71±0.15 | 32.63±0.30 | 35.81±0.05 | |
实验组PS | CSD[ | 11.56±0.13 | 15.07±0.12 | 19.71±0.10 | 23.76±0.06 |
STAC[ | 14.53±0.15 | 18.81±0.06 | 24.93±0.12 | 29.34±0.20 | |
co-rectify[ | 18.98±0.15 | 23.46±0.21 | 27.79±0.25 | 31.59±0.05 | |
Unbiased_teacher [ | 22.01±0.35 | 25.44±0.04 | 29.54±0.12 | 32.96±0.12 | |
CrossRectify[ | 22.97±0.12 | 27.89±0.06 | 32.76±0.11 | 35.89±0.10 |
Tab. 3 Experimental results of Faster-RCNN-FPN based models (ResNet-50 backbone network) on MS-COCO dataset (AP50:90)
组别 | 算法 | 不同监督程度的AP50:90值/% | |||
---|---|---|---|---|---|
1% | 2% | 5% | 10% | ||
对照组 | CSD[ | 10.51±0.06 | 13.93±0.12 | 18.63±0.07 | 22.46±0.08 |
STAC[ | 13.97±0.35 | 18.25±0.25 | 24.38±0.12 | 28.64±0.21 | |
co-rectify[ | 18.05±0.15 | 22.45±0.15 | 26.75±0.05 | 30.40±0.05 | |
Unbiased_teacher [ | 20.75±0.12 | 24.30±0.07 | 28.27±0.11 | 31.50±0.10 | |
CrossRectify[ | 21.90±0.11 | 26.70±0.07 | 31.70±0.04 | 34.89±0.07 | |
实验组BS | CSD[ | 11.45±0.13 | 15.03±0.09 | 19.59±0.06 | 23.58±0.10 |
STAC[ | 14.47±0.28 | 18.74±0.36 | 24.88±0.15 | 29.22±0.11 | |
co-rectify[ | 18.86±0.06 | 23.21±0.09 | 27.63±0.12 | 31.35±0.08 | |
Unbiased_teacher [ | 21.73±0.04 | 25.31±0.12 | 29.39±0.25 | 32.62±0.06 | |
CrossRectify[ | 22.86±0.20 | 27.71±0.15 | 32.63±0.30 | 35.81±0.05 | |
实验组PS | CSD[ | 11.56±0.13 | 15.07±0.12 | 19.71±0.10 | 23.76±0.06 |
STAC[ | 14.53±0.15 | 18.81±0.06 | 24.93±0.12 | 29.34±0.20 | |
co-rectify[ | 18.98±0.15 | 23.46±0.21 | 27.79±0.25 | 31.59±0.05 | |
Unbiased_teacher [ | 22.01±0.35 | 25.44±0.04 | 29.54±0.12 | 32.96±0.12 | |
CrossRectify[ | 22.97±0.12 | 27.89±0.06 | 32.76±0.11 | 35.89±0.10 |
算法 | 标注数据集 | 无标注数据集 | mAP/% |
---|---|---|---|
DU[ | VOC07 | VOC12 | 78.60 |
DU+ICSD | 79.36 |
Tab. 4 Comparision experiment results of ICSD difficulty measurer on Faster-RCNN-FPN based models (ResNet-50 backbone network)
算法 | 标注数据集 | 无标注数据集 | mAP/% |
---|---|---|---|
DU[ | VOC07 | VOC12 | 78.60 |
DU+ICSD | 79.36 |
1 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 International Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2016: 779-788. |
2 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37. |
3 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
4 | EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The Pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. |
5 | LIN T-Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. |
6 | ROSENBERG C, HEBERT M, SCHNEIDERMAN H. Semi-supervised self-training of object detection models[C]// Proceedings of the 2005 7th IEEE Workshops on Applications of Computer Vision. Piscataway: IEEE, 2005: 29-36. |
7 | ARAZO E, ORTEGO D, ALBERT P, et al. Pseudo-labeling and confirmation bias in deep semi-supervised learning[C]// Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-8. |
8 | JEONG J, LEE S, KIM J, et al. Consistency-based semi-supervised learning for object detection[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 10759-10768. |
9 | JEONG J, VERMA V, HYUN M, et al. Interpolation-based semi-supervised learning for object detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11597-11606. |
10 | SOHN K, ZHANG Z, LI C-L, et al. A simple semi-supervised learning framework for object detection[EB/OL]. (2020-05-10)[2023-08-01]. . |
11 | ZHOU Q, YU C, WANG Z, et al. Instant-Teaching: an end-to-end semi-supervised object detection framework[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4079-4088. |
12 | LIU Y-C, MA C-Y, KIRA Z. Unbiased teacher for semi-supervised object detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9809-9818. |
13 | XU M, ZHANG Z, HU H, et al. End-to-end semi-supervised object detection with soft teacher[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3040-3049. |
14 | MA C, PAN X, YE Q, et al. CrossRectify: leveraging disagreement for semi-supervised object detection[J]. Pattern Recognition, 2023, 137: 109280. |
15 | REN Z, YEH R A, SCHWING A G. Not all unlabeled data are equal: learning to weight data in semi-supervised learning[C]// Proceedings of the 34th Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21786-21797. |
16 | BENGIO Y, LOURADOUR J, COLLOBERT R, et al. Curriculum learning[C]// Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 41-48. |
17 | TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1195-1204. |
18 | 戴立伟,黄山.基于课程学习思想的目标检测增强算法[J]. 计算机辅助设计与图形学学报, 2021, 33(2): 278-286. |
DAI L W, HUANG S. Object detection enhancement algorithm based on curriculum learning[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(2): 278-286. | |
19 | 贾乐瑶,马盈仓,邢志伟.基于自步学习的自适应半监督聚类算法[J]. 西北大学学报(自然科学版),2022, 52(5): 847-856. |
JIA L Y, MA Y C, XING Z W. An adaptive semi-supervised clustering algorithm based on self-paced learning[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(5): 847-856. | |
20 | 古楠楠,孙湘南,刘伟.基于自步学习与稀疏自表达的半监督分类方法[J]. 系统科学与数学,2020,40(1):191-208. |
GU N N, SUN X N, LIU W. Semi-supervised classification method based on self-paced learning and sparse self-expression[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(1): 191-208. | |
21 | PLATANIOS E A, STRETCU O, NEUBIG G, et al. Competence-based curriculum learning for neural machine translation[EB/OL]. (2019-03-23)[2023-08-01]. . |
22 | WANG Z, LI Y, GUO Y, et al. Data-uncertainty guided multi-phase learning for semi-supervised object detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4566-4575. |
23 | YANG L, ZHUO W, QI L, et al. ST++: make self-training work better for semi-supervised semantic segmentation[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4258-4267. |
[1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[2] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
[3] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[4] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[5] | Yan ZHOU, Yang LI. Rectified cross pseudo supervision method with attention mechanism for stroke lesion segmentation [J]. Journal of Computer Applications, 2024, 44(6): 1942-1948. |
[6] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[7] | Yaping DENG, Yingjiang LI. Review of YOLO algorithm and its applications to object detection in autonomous driving scenes [J]. Journal of Computer Applications, 2024, 44(6): 1949-1958. |
[8] | Huantong GENG, Zhenyu LIU, Jun JIANG, Zichen FAN, Jiaxing LI. Embedded road crack detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(5): 1613-1618. |
[9] | Xiaogang SONG, Dongdong ZHANG, Pengfei ZHANG, Li LIANG, Xinhong HEI. Real-time object detection algorithm for complex construction environments [J]. Journal of Computer Applications, 2024, 44(5): 1605-1612. |
[10] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[11] | Wei WANG, Chunhui ZHAO, Xinyao TANG, Liugang XI. 3D vehicle detection with adaptive horizon line constraints [J]. Journal of Computer Applications, 2024, 44(3): 909-915. |
[12] | Xinye LI, Yening HOU, Yinghui KONG, Zhiqi YAN. Few-shot object detection combining feature fusion and enhanced attention [J]. Journal of Computer Applications, 2024, 44(3): 745-751. |
[13] | Yuqiu LI, Liping HOU, Jian XUE, Ke LYU, Yong WANG. Remote sensing image recommendation method based on content interpretation [J]. Journal of Computer Applications, 2024, 44(3): 722-731. |
[14] | Keyi FU, Gaocai WANG, Man WU. Few-shot object detection method based on improved region proposal network and feature aggregation [J]. Journal of Computer Applications, 2024, 44(12): 3790-3797. |
[15] | Jiachen YU, Ye YANG. Irregular object grasping by soft robotic arm based on clipped proximal policy optimization algorithm [J]. Journal of Computer Applications, 2024, 44(11): 3629-3638. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||