Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2326-2333.DOI: 10.11772/j.issn.1001-9081.2023081062

• Artificial intelligence • Previous Articles     Next Articles

Semi-supervised object detection framework guided by curriculum learning

Yingjun ZHANG1, Niuniu LI1(), Binhong XIE1, Rui ZHANG1, Wangdong LU2   

  1. 1.College of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan Shanxi 030024,China
    2.Shanxi Tianhe Cloud Computing Company Limited,Lvliang Shanxi 033000,China
  • Received:2023-08-07 Revised:2023-10-10 Accepted:2023-10-17 Online:2023-12-18 Published:2024-08-10
  • Contact: Niuniu LI
  • About author:ZHANG Yingjun, born in 1969, M. S., professor-level seniorengineer. His research interests include intelligent software, softwarearchitecture.
    LI Niuniu , born in 1998, M. S. candidate, His research interestsinclude semi-supervised object detection.
    XIE Binhong , born in 1971, M. S., associate professor. Hisresearch interests include intelligent software, machine learning.
    ZHANG Rui , born in 1987, Ph. D., associate professor. Hisresearch interests include intelligent information processing.
    LU Wangdong , born in 1970, M. S., senior engineer. His researchinterests include signal and information systems.
  • Supported by:
    This work is partially supported by Shanxi Provincial Basic ResearchProgram Project (20210302123216) ; Lvliang Key Research andDevelopment Project for Introduction of High-level Scientific andTechnological Talents( 2022RC08)

课程学习指导下的半监督目标检测框架

张英俊1, 李牛牛1(), 谢斌红1, 张睿1, 陆望东2   

  1. 1.太原科技大学 计算机科学与技术学院,太原 030024
    2.山西天河云计算有限公司,山西 吕梁 033000
  • 通讯作者: 李牛牛
  • 作者简介:张英俊(1969—),男,山西河津人,教授级高级工程师,硕士,主要研究方向:智能化软件、软件体系结构
    李牛牛(1998—),男,山西吕梁人,硕士研究生,主要研究方向:半监督目标检测 dbvoid@163.com
    谢斌红(1971—),男,山西运城人,副教授,硕士,主要研究方向:智能化软件、机器学习
    张睿(1987—),男,山西太原人,副教授,博士,主要研究方向:智能信息处理
    陆望东(1970—),男,山西吕梁人,高级工程师,硕士,主要研究方向:信号与信息系统。
  • 基金资助:
    山西省基础研究计划项目(20210302123216);吕梁市引进高层次科技人才重点研发项目(2022RC08)

Abstract:

In order to enhance the quality of pseudo labels, address the issue of confirmation bias in Semi-Supervised Object Detection (SSOD), and tackle the challenge of ignoring complexities in unlabeled data leading to erroneous pseudo labels in existing algorithms, an SSOD framework guided by Curriculum Learning (CL) was proposed. The framework consisted of two modules: the ICSD (IoU-Confidence-Standard-Deviation) difficulty measurer and the BP (Batch-Package) training scheduler. The ICSD difficulty measurer comprehensively considered information such as IoU (Intersection over Union) between pseudo-bounding boxes, confidence, class label, etc.,and the C_IOU (Checkpoint_IOU) method was introduced to evaluate the reliability of unlabeled data. The BP training scheduler designed two efficient scheduling strategies, starting from the perspectives of Batch and Package respectively, giving priority to unlabeled data with high reliability indicators to achieve full utilization of the entire unlabeled data set in the form of course learning. Extensive comparative experimental results on the Pascal VOC and MS-COCO datasets demonstrate that the proposed framework applies to existing SSOD algorithms and exhibits significant improvements in detection accuracy and stability.

Key words: semi-supervised learning, object detection, Curriculum Learning (CL), training strategy, difficulty measurer, training scheduler

摘要:

为了提高伪标签的质量,解决半监督目标检测(SSOD)中的确认偏差问题,并针对现有算法中忽视无标注数据复杂性导致错误伪标签的难点,提出一种课程学习(CL)指导下的SSOD框架,该框架主要由ICSD(IoU-Confidence-Standard-Deviation)难度测量器和BP(Batch-Package)训练调度器这2个模块组成。其中,ICSD难度测量器综合考虑了伪边界框之间的交并比(IoU)、置信度、类别标签等信息,并引入C_IOU(Checkpoint_IOU)方法评估无标注数据的可靠性;BP训练调度器设计2种高效调度策略,分别从Batch和Package角度出发,优先选择可靠性指标高的无标记数据,实现以CL的方式充分利用整个无标记数据集。在Pascal VOC和MS-COCO数据集上的广泛对比实验结果表明,所提框架不仅适用于现有的SSOD算法,而且检测精度和稳定性都得到显著提升。

关键词: 半监督学习, 目标检测, 课程学习, 训练策略, 难度测量器, 训练调度器

CLC Number: