Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1504-1510.DOI: 10.11772/j.issn.1001-9081.2024050567
• Artificial intelligence • Previous Articles
Biqing ZENG1(), Guangbin ZHONG1, James Zhiqing WEN2
Received:
2024-05-09
Revised:
2024-07-18
Accepted:
2024-07-19
Online:
2024-07-25
Published:
2025-05-10
Contact:
Biqing ZENG
About author:
ZENG Biqing, born in 1969, Ph. D., professor. His research interests include natural language processing, artificial intelligence.Supported by:
通讯作者:
曾碧卿
作者简介:
曾碧卿(1969—),男,湖南衡南人,教授,博士,CCF杰出会员,主要研究方向:自然语言处理、人工智能基金资助:
CLC Number:
Biqing ZENG, Guangbin ZHONG, James Zhiqing WEN. Few-shot named entity recognition based on decomposed fuzzy span[J]. Journal of Computer Applications, 2025, 45(5): 1504-1510.
曾碧卿, 钟广彬, 温志庆. 基于分解式模糊跨度的小样本命名实体识别[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1504-1510.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050567
模型 | Intra | Inter | ||||||
---|---|---|---|---|---|---|---|---|
1~2-shot | 5~10-shot | 1~2-shot | 5~10-shot | |||||
5 way | 10 way | 5 way | 10 way | 5 way | 10 way | 5 way | 10 way | |
ProtoBERT | 23.45 | 19.76 | 41.93 | 34.61 | 44.44 | 39.09 | 58.80 | 53.97 |
NNShot | 31.01 | 21.88 | 35.74 | 27.67 | 54.29 | 46.98 | 50.56 | 50.00 |
StructShot | 35.92 | 25.38 | 38.83 | 26.39 | 57.33 | 49.46 | 57.16 | 49.39 |
CONTaiNER | 40.43 | 33.84 | 53.70 | 47.49 | 55.95 | 48.35 | 61.83 | 57.12 |
FNFP | 33.14 | 24.44 | 54.80 | 48.24 | 51.87 | 46.14 | 63.86 | 60.91 |
ESD | 41.44 | 32.29 | 50.68 | 42.92 | 66.46 | 59.95 | 74.14 | 67.91 |
DecomMeta | 52.04 | 43.50 | 63.23 | 56.84 | 68.77 | 63.26 | 71.62 | 68.32 |
TadNER | 60.78 | 55.44 | 67.94 | 60.87 | 64.83 | 64.06 | 72.12 | 69.94 |
DFSM | 55.84 | 46.82 | 72.89 | 64.46 | 74.57 | 67.99 | 82.15 | 80.33 |
Tab. 1 F1 scores of different models on Few-NERD dataset
模型 | Intra | Inter | ||||||
---|---|---|---|---|---|---|---|---|
1~2-shot | 5~10-shot | 1~2-shot | 5~10-shot | |||||
5 way | 10 way | 5 way | 10 way | 5 way | 10 way | 5 way | 10 way | |
ProtoBERT | 23.45 | 19.76 | 41.93 | 34.61 | 44.44 | 39.09 | 58.80 | 53.97 |
NNShot | 31.01 | 21.88 | 35.74 | 27.67 | 54.29 | 46.98 | 50.56 | 50.00 |
StructShot | 35.92 | 25.38 | 38.83 | 26.39 | 57.33 | 49.46 | 57.16 | 49.39 |
CONTaiNER | 40.43 | 33.84 | 53.70 | 47.49 | 55.95 | 48.35 | 61.83 | 57.12 |
FNFP | 33.14 | 24.44 | 54.80 | 48.24 | 51.87 | 46.14 | 63.86 | 60.91 |
ESD | 41.44 | 32.29 | 50.68 | 42.92 | 66.46 | 59.95 | 74.14 | 67.91 |
DecomMeta | 52.04 | 43.50 | 63.23 | 56.84 | 68.77 | 63.26 | 71.62 | 68.32 |
TadNER | 60.78 | 55.44 | 67.94 | 60.87 | 64.83 | 64.06 | 72.12 | 69.94 |
DFSM | 55.84 | 46.82 | 72.89 | 64.46 | 74.57 | 67.99 | 82.15 | 80.33 |
模型 | 1-shot | 5-shot | ||||||
---|---|---|---|---|---|---|---|---|
News | Wiki | Social | Mixed | News | Wiki | Social | Mixed | |
TransferBERT | 4.75 | 0.57 | 2.71 | 3.46 | 15.36 | 3.62 | 11.08 | 35.49 |
SimBERT | 19.22 | 6.91 | 5.18 | 13.99 | 32.01 | 10.63 | 8.20 | 21.14 |
Matching Network | 19.50 | 4.73 | 17.23 | 15.06 | 19.85 | 5.58 | 6.61 | 8.08 |
ProtoBERT | 32.49 | 3.89 | 10.68 | 6.67 | 50.06 | 9.54 | 17.26 | 13.59 |
FNFP | 24.50 | 8.61 | 10.89 | 26.90 | 51.58 | 16.10 | 20.62 | 29.91 |
L-TapNet+CDT | 44.30 | 12.04 | 20.80 | 15.17 | 45.35 | 11.65 | 23.30 | 20.95 |
DecomMeta | 46.09 | 17.54 | 25.14 | 34.13 | 58.18 | 31.36 | 31.02 | 45.55 |
DFSM | 50.91 | 28.80 | 21.65 | 34.80 | 61.36 | 36.97 | 26.20 | 45.92 |
Tab. 2 F1 scores of different models on CrossNER dataset
模型 | 1-shot | 5-shot | ||||||
---|---|---|---|---|---|---|---|---|
News | Wiki | Social | Mixed | News | Wiki | Social | Mixed | |
TransferBERT | 4.75 | 0.57 | 2.71 | 3.46 | 15.36 | 3.62 | 11.08 | 35.49 |
SimBERT | 19.22 | 6.91 | 5.18 | 13.99 | 32.01 | 10.63 | 8.20 | 21.14 |
Matching Network | 19.50 | 4.73 | 17.23 | 15.06 | 19.85 | 5.58 | 6.61 | 8.08 |
ProtoBERT | 32.49 | 3.89 | 10.68 | 6.67 | 50.06 | 9.54 | 17.26 | 13.59 |
FNFP | 24.50 | 8.61 | 10.89 | 26.90 | 51.58 | 16.10 | 20.62 | 29.91 |
L-TapNet+CDT | 44.30 | 12.04 | 20.80 | 15.17 | 45.35 | 11.65 | 23.30 | 20.95 |
DecomMeta | 46.09 | 17.54 | 25.14 | 34.13 | 58.18 | 31.36 | 31.02 | 45.55 |
DFSM | 50.91 | 28.80 | 21.65 | 34.80 | 61.36 | 36.97 | 26.20 | 45.92 |
模块 | Intra | Inter |
---|---|---|
DFSM | 55.84 | 74.57 |
DFSM w/o. FS | 53.78 | 72.82 |
DFSM w/o. PCL | 51.12 | 70.99 |
DFSM w/o. PML | 52.67 | 71.58 |
Tab. 3 F1 scores of ablation study
模块 | Intra | Inter |
---|---|---|
DFSM | 55.84 | 74.57 |
DFSM w/o. FS | 53.78 | 72.82 |
DFSM w/o. PCL | 51.12 | 70.99 |
DFSM w/o. PML | 52.67 | 71.58 |
温度系数τ | F1/% | |
---|---|---|
Intra | Inter | |
τ = 0.05 | 72.89 | 81.13 |
τ = 0.10 | 72.62 | 81.45 |
τ = 0.20 | 72.28 | 81.81 |
τ = 0.40 | 72.06 | 82.15 |
Tab. 4 F1 scores of different temperature coefficients
温度系数τ | F1/% | |
---|---|---|
Intra | Inter | |
τ = 0.05 | 72.89 | 81.13 |
τ = 0.10 | 72.62 | 81.45 |
τ = 0.20 | 72.28 | 81.81 |
τ = 0.40 | 72.06 | 82.15 |
1 | HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2023-09-01].. |
2 | SANTORO A, BARTUNOV S, BOTVINICK M, et al. Meta-learning with memory-augmented neural networks[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1842-1850. |
3 | MA X, HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016: 1064-1074. |
4 | LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 260-270. |
5 | PETERS M E, AMMAR W, BHAGAVATULA C, et al. Semi-supervised sequence tagging with bidirectional language models[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1756-1765. |
6 | DING N, XU G, CHEN Y, et al. Few-NERD: a few-shot named entity recognition dataset[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 3198-3213. |
7 | HUANG J, LI C, SUBUDHI K, et al. Few-shot named entity recognition: an empirical baseline study[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 10408-10423. |
8 | MA T, JIANG H, WU Q, et al. Decomposed meta-learning for few-shot named entity recognition[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 1584-1596. |
9 | DAS S S S, KATIYAR A, PASSONNEAU R J, et al. CONTaiNER: few-shot named entity recognition via contrastive learning[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 6338-6353. |
10 | HOU Y, CHE W, LAI Y, et al. Few-shot slot tagging with collapsed dependency transfer and label-enhanced task-adaptive projection network[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 1381-1393. |
11 | ZIYADI M, SUN Y, GOSWAMI A, et al. Example-based named entity recognition[EB/OL]. [2023-09-01].. |
12 | FRITZLER A, LOGACHEVA V, KRETOV M. Few-shot classification in named entity recognition task[C]// Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. New York: ACM, 2019: 993-1000. |
13 | MA J, BALLESTEROS M, DOSS S, et al. Label semantics for few shot named entity recognition[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 1956-1971. |
14 | SHEN Y, MA X, TAN Z, et al. Locate and label: a two-stage identifier for nested named entity recognition[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 2782-2794. |
15 | WANG P, XU R, LIU T, et al. An enhanced span-based decomposition method for few-shot sequence labeling[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 5012-5024. |
16 | WU S, SHEN Y, TAN Z, et al. Propose-and-Refine: a two-stage set prediction network for nested named entity recognition[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2022: 4418-4424. |
17 | KULKARNI V, MEHDAD Y, CHEVALIER T. Domain adaptation for named entity recognition in online media with word embeddings[EB/OL]. [2023-11-01].. |
18 | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: PMLR, 2017: 1126-1135. |
19 | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3637-3645. |
20 | SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 4080-4090. |
21 | RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[EB/OL]. [2023-09-21].. |
22 | SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1199-1208. |
23 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
24 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
25 | WANG J, WANG C, TAN C, et al. SpanProto: a two-stage span-based prototypical network for few-shot named entity recognition[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 3466-3476. |
26 | SANG E F, DE MEULDER F. Introduction to the CoNLL-2003 shared task: language-independent named entity recognition[C]// Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003. Stroudsburg: ACL, 2003: 142-147. |
27 | ZELDES A. The GUM corpus: creating multilayer resources in the classroom[J]. Language Resources and Evaluation, 2017, 51(3): 581-612. |
28 | DERCZYNSKI L, NICHOLS E, VAN ERP M, et al. Results of the WNUT2017 shared task on novel and emerging entity recognition[C]// Proceedings of the 3rd Workshop on Noisy User-generated Text. Stroudsburg: ACL, 2017: 140-147. |
29 | PRADHAN S, MOSCHITTI A, XUE N, et al. Towards robust linguistic analysis using OntoNotes[C]// Proceedings of the 17th Conference on Computational Natural Language Learning. Stroudsburg: ACL, 2013: 143-152. |
30 | YANG Y, KATIYAR A. Simple and effective few-shot named entity recognition with structured nearest neighbor learning[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6365-6375. |
31 | 戚荣志,周俊宇,李水艳,等.基于细粒度原型网络的小样本命名实体识别方法[J].软件学报,2024,35(10):4751-4765. |
QI R Z, ZHOU J Y, LI S Y, et al. Few-shot named entity recognition based on fine-grained prototypical networks[J]. Journal of Software, 2024, 35(10): 4751-4765. | |
32 | LI Y, YU Y, QIAN T. Type-aware decomposed framework for few-shot named entity recognition[C]// Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 8911-8927. |
33 | LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[EB/OL]. [2024-09-01].. |
34 | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |
[1] | Yiqin YAN, Chuan LUO, Tianrui LI, Hongmei CHEN. Cross-domain few-shot classification model based on relation network and Vision Transformer [J]. Journal of Computer Applications, 2025, 45(4): 1095-1103. |
[2] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
[3] | Xuewen YAN, Zhangjin HUANG. Few-shot image classification method based on contrast learning [J]. Journal of Computer Applications, 2025, 45(2): 383-391. |
[4] | Binhong XIE, Wanyin GAO, Wangdong LU, Yingjun ZHANG, Rui ZHANG. Dense object counting network with few-shot similarity matching feature enhancement [J]. Journal of Computer Applications, 2025, 45(2): 403-410. |
[5] | Xueqiang LYU, Tao WANG, Xindong YOU, Ge XU. HTLR: named entity recognition framework with hierarchical fusion of multi-knowledge [J]. Journal of Computer Applications, 2025, 45(1): 40-47. |
[6] | Huanliang SUN, Siyi WANG, Junling LIU, Jingke XU. Help-seeking information extraction model for flood event in social media data [J]. Journal of Computer Applications, 2024, 44(8): 2437-2445. |
[7] | Xinyan YU, Cheng ZENG, Qian WANG, Peng HE, Xiaoyu DING. Few-shot news topic classification method based on knowledge enhancement and prompt learning [J]. Journal of Computer Applications, 2024, 44(6): 1767-1774. |
[8] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[9] | Yongfeng DONG, Jiaming BAI, Liqin WANG, Xu WANG. Chinese named entity recognition combining prior knowledge and glyph features [J]. Journal of Computer Applications, 2024, 44(3): 702-708. |
[10] | Yingjie GAO, Min LIN, Siriguleng, Bin LI, Shujun ZHANG. Prompt learning method for ancient text sentence segmentation and punctuation based on span-extracted prototypical network [J]. Journal of Computer Applications, 2024, 44(12): 3815-3822. |
[11] | Li XIE, Weiping SHU, Junjie GENG, Qiong WANG, Hailin YANG. Few-shot cervical cell classification combining weighted prototype and adaptive tensor subspace [J]. Journal of Computer Applications, 2024, 44(10): 3200-3208. |
[12] | Bihui YU, Xingye CAI, Jingxuan WEI. Few-shot text classification method based on prompt learning [J]. Journal of Computer Applications, 2023, 43(9): 2735-2740. |
[13] | Xiaomin ZHOU, Fei TENG, Yi ZHANG. Automatic international classification of diseases coding model based on meta-network [J]. Journal of Computer Applications, 2023, 43(9): 2721-2726. |
[14] | Xiaoyan ZHANG, Zhengyu DUAN. Cross-lingual zero-resource named entity recognition model based on sentence-level generative adversarial network [J]. Journal of Computer Applications, 2023, 43(8): 2406-2411. |
[15] | Junjian JIANG, Dawei LIU, Yifan LIU, Yougui REN, Zhibin ZHAO. Few-shot object detection algorithm based on Siamese network [J]. Journal of Computer Applications, 2023, 43(8): 2325-2329. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||