Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1766-1775.DOI: 10.11772/j.issn.1001-9081.2024060905
• CCF BigData 2024 • Previous Articles
Tianyu XUE, Aiping LI(), Liguo DUAN
Received:
2024-07-01
Revised:
2024-08-02
Accepted:
2024-08-20
Online:
2024-08-28
Published:
2025-06-10
Contact:
Aiping LI
About author:
XUE Tianyu, born in 1999, M. S. candidate. His research interests include edge computing, reinforcement learning.Supported by:
通讯作者:
李爱萍
作者简介:
薛天宇(1999—),男,山西晋中人,硕士研究生,CCF会员,主要研究方向:边缘计算、强化学习基金资助:
CLC Number:
Tianyu XUE, Aiping LI, Liguo DUAN. Vehicular edge computing scheme with task offloading and resource optimization[J]. Journal of Computer Applications, 2025, 45(6): 1766-1775.
薛天宇, 李爱萍, 段利国. 联合任务卸载和资源优化的车辆边缘计算方案[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1766-1775.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060905
参数 | 含义 | 参数 | 含义 |
---|---|---|---|
时隙集合 | 边缘节点 | ||
车辆集合 | 时隙 | ||
边缘节点集合 | 边缘节点 | ||
任务集合 | 边缘节点 | ||
计算资源集合 | 边缘节点 | ||
V2I通信带宽 | 边缘节点 | ||
边缘节点 | 任务 | ||
车辆 | 边缘节点 | ||
车辆 | 边缘节点 | ||
任务 | 在时隙 | ||
处理任务 | 时隙 | ||
任务 | 时隙 | ||
车辆 | 时隙 |
Tab. 1 Summary of main parameters
参数 | 含义 | 参数 | 含义 |
---|---|---|---|
时隙集合 | 边缘节点 | ||
车辆集合 | 时隙 | ||
边缘节点集合 | 边缘节点 | ||
任务集合 | 边缘节点 | ||
计算资源集合 | 边缘节点 | ||
V2I通信带宽 | 边缘节点 | ||
边缘节点 | 任务 | ||
车辆 | 边缘节点 | ||
车辆 | 边缘节点 | ||
任务 | 在时隙 | ||
处理任务 | 时隙 | ||
任务 | 时隙 | ||
车辆 | 时隙 |
参数 | 值 | 参数 | 值 |
---|---|---|---|
Critic学习率 | 最小重放缓冲区大小 | ||
Actor学习率 | 目标更新率 | ||
优化器 | 批处理大小 | ||
激活函数 | 折扣系数 | ||
最大重放缓冲区大小 | 探索策略 |
Tab. 2 Related parameters of MATD3 algorithm
参数 | 值 | 参数 | 值 |
---|---|---|---|
Critic学习率 | 最小重放缓冲区大小 | ||
Actor学习率 | 目标更新率 | ||
优化器 | 批处理大小 | ||
激活函数 | 折扣系数 | ||
最大重放缓冲区大小 | 探索策略 |
1 | 孙彦景,余政达,陈瑞瑞,等. 车联网中基于深度强化学习的高可靠资源分配算法[J]. 重庆邮电大学学报(自然科学版), 2023, 35(4):706-714. |
SUN Y J, YU Z D, CHEN R R, et al. Deep reinforcement learning based high reliability resource allocation algorithm for internet of vehicles[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(4):706-714. | |
2 | 李智勇,王琦,陈一凡,等. 车辆边缘计算环境下任务卸载研究综述[J]. 计算机学报, 2021, 44(5):963-982. |
LI Z Y, WANG Q, CHEN Y F, et al. A survey on task offloading research in vehicular edge computing[J]. Chinese Journal of Computers, 2019, 44(5):963-982. | |
3 | ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain Non-Orthogonal Multiple Access (NOMA) in 5G systems: potentials and challenges[J]. IEEE Communications Surveys and Tutorials, 2017, 19(2): 721-742. |
4 | CHENG J, GUAN D. Research on task-offloading decision mechanism in mobile edge computing-based internet of vehicle[J]. EURASIP Journal on Wireless Communications and Networking, 2021, 2021: No.101. |
5 | HU X, GUO L, YAO Z, et al. Balance-oriented task unloading optimizing algorithm for parked vehicle edge computing[C]// Proceedings of the 2021 International Conference on Intelligent Transportation Engineering, LNEE 901. Singapore: Springer, 2022: 512-525. |
6 | WANG S, WANG W, JIA Z, et al. Flexible task scheduling based on edge computing and cloud collaboration[J]. Computer Systems Science and Engineering, 2022, 42(3): 1241-1255. |
7 | CHEN C, ZHANG Y, WANG Z, et al. Distributed computation offloading method based on deep reinforcement learning in ICV[J]. Applied Soft Computing, 2021, 103: No.107108. |
8 | ZHANG K, CAO J, ZHANG Y. Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2): 1405-1413. |
9 | HUANG X, HE L, CHEN X, et al. Revenue and energy efficiency-driven delay-constrained computing task offloading and resource allocation in a vehicular edge computing network: a deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2022, 9(11): 8852-8868. |
10 | LIU K, FENG L, DAI P, et al. Coding-assisted broadcast scheduling via memetic computing in SDN-based vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2420-2431. |
11 | LIU C, LIU K, GUO S, et al. Adaptive offloading for time-critical tasks in heterogeneous internet of vehicles[J]. IEEE Internet of Things Journal, 2020, 7(9): 7999-8011. |
12 | DAI P, SONG F, LIU K, et al. Edge intelligence for adaptive multimedia streaming in heterogeneous internet of vehicles[J]. IEEE Transactions on Mobile Computing, 2023, 22(3): 1464-1478. |
13 | LIU Y, ZHANG H, LONG K, et al. Energy efficient subchannel matching and power allocation in NOMA autonomous driving vehicular networks[J]. IEEE Wireless Communications, 2019, 26(4): 88-93. |
14 | PATEL D K, SHAH H, DING Z, et al. Performance analysis of NOMA in vehicular communications over i.n.i.d Nakagami-m fading channels[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6254-6268. |
15 | ZHANG F, WANG M M, BAO X, et al. Centralized resource allocation and distributed power control for NOMA-integrated NR V2X[J]. IEEE Internet of Things Journal, 2021, 8(22): 16522-16534. |
16 | LI C, ZHANG Y, GAO X, et al. Energy-latency tradeoffs for edge caching and dynamic service migration based on DQN in mobile edge computing[J]. Journal of Parallel and Distributed Computing, 2022, 166: 15-31. |
17 | FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 1587-1596. |
18 | ZHAO X, HUANG G, JIANG J, et al. Task offloading of cooperative intrusion detection system based on Deep Q Network in mobile edge computing[J]. Expert Systems with Applications, 2022, 206: No.117860. |
19 | CHEN Y, HAN W, ZHU Q, et al. Target-driven obstacle avoidance algorithm based on DDPG for connected autonomous vehicles[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022: No.61. |
20 | XU X, LIU K, DAI P, et al. Joint task offloading and resource optimization in NOMA-based vehicular edge computing: a game-theoretic DRL approach[J]. Journal of Systems Architecture, 2023, 134: No.102780. |
21 | PAPANDRIOPOULOS J, EVANS J S. Low-complexity distributed algorithms for spectrum balancing in multi-user DSL networks [C]// Proceedings of the 2006 IEEE International Conference on Communications. Piscataway: IEEE, 2006: 3270-3275. |
22 | LIU C, LIU K, REN H, et al. RtDS: real-time distributed strategy for multi-period task offloading in vehicular edge computing environment [J]. Neural Computing and Applications, 2023, 35(17): 12373-12387. |
23 | ZHU H, WU Q, WU X J, et al. Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning[J]. IEEE Internet of Things Journal, 2022, 9(14): 12770-12782. |
24 | XU L, YANG Z, WU H, et al. Socially driven joint optimization of communication, caching, and computing resources in vehicular networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 461-476. |
25 | HU X, HUANG Y. Deep reinforcement learning based offloading decision algorithm for vehicular edge computing[J]. PeerJ Computer Science, 2022, 8: No.e1126. |
26 | QIU X, ZHANG W, CHEN W, et al. Distributed and collective deep reinforcement learning for computation offloading: a practical perspective[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(5): 1085-1101. |
27 | CHENG Z, MIN M, LIWANG M, et al. Multiagent DDPG-based joint task partitioning and power control in fog computing networks[J]. IEEE Internet of Things Journal, 2022, 9(1): 104-116. |
28 | ZHAO L, ZHANG E, WAN S, et al. MESON: a mobility-aware dependent task offloading scheme for urban vehicular edge computing[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 4259-4272. |
[1] | Hongwei FAN, Woping XU. Resource allocation for relay in intelligent reflecting surface assisted wireless powered communication networks [J]. Journal of Computer Applications, 2025, 45(5): 1619-1624. |
[2] | Yufei XIANG, Zhengwei NI. Edge federation dynamic analysis for hierarchical federated learning based on evolutionary game [J]. Journal of Computer Applications, 2025, 45(4): 1077-1085. |
[3] | Yuchen LI, Junyi WU, Mengjia GE, Lili PAN, Xiaorong JING. Joint beamforming and power allocation in RIS-assisted multi-cluster NOMA-DFRC system [J]. Journal of Computer Applications, 2025, 45(4): 1256-1262. |
[4] | Huahua WANG, Liang HUANG, Jiajie CHEN, Jiening FANG. Dynamic allocation algorithm for multi-beam subcarriers of low orbit satellites based on deep reinforcement learning [J]. Journal of Computer Applications, 2025, 45(2): 571-577. |
[5] | Junna ZHANG, Xinxin WANG, Tianze LI, Xiaoyan ZHAO, Peiyan YUAN. Task offloading method based on dynamic service cache assistance [J]. Journal of Computer Applications, 2024, 44(5): 1493-1500. |
[6] | Xiaoyan ZHAO, Wei HAN, Junna ZHANG, Peiyan YUAN. Collaborative offloading strategy in internet of vehicles based on asynchronous deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(5): 1501-1510. |
[7] | Rui TANG, Chuanlin PANG, Ruizhi ZHANG, Chuan LIU, Shibo YUE. DDPG-based resource allocation in D2D communication-empowered cellular network [J]. Journal of Computer Applications, 2024, 44(5): 1562-1569. |
[8] | Rui TANG, Shibo YUE, Ruizhi ZHANG, Chuan LIU, Chuanlin PANG. Energy efficiency optimization mechanism for UAV-assisted and non-orthogonal multiple access-enabled data collection system [J]. Journal of Computer Applications, 2024, 44(4): 1209-1218. |
[9] | Hualiang LUO, Quanzhong LI, Qi ZHANG. Robust resource allocation optimization in cognitive wireless network integrating information communication and over-the-air computation [J]. Journal of Computer Applications, 2024, 44(4): 1195-1202. |
[10] | Fatang CHEN, Miao HUANG, Yufeng JIN. Resource allocation algorithm for low earth orbit satellites oriented to user demand [J]. Journal of Computer Applications, 2024, 44(4): 1242-1247. |
[11] | Xintong QIN, Zhengyu SONG, Tianwei HOU, Feiyue WANG, Xin SUN, Wei LI. Channel access and resource allocation algorithm for adaptive p-persistent mobile ad hoc network [J]. Journal of Computer Applications, 2024, 44(3): 863-868. |
[12] | Jiachen YU, Ye YANG. Irregular object grasping by soft robotic arm based on clipped proximal policy optimization algorithm [J]. Journal of Computer Applications, 2024, 44(11): 3629-3638. |
[13] | Yongjian MA, Xuhua SHI, Peiyao WANG. Constrained multi-objective evolutionary algorithm based on two-stage search and dynamic resource allocation [J]. Journal of Computer Applications, 2024, 44(1): 269-277. |
[14] | Lei LI, Guofu ZHANG, Zhaopin SU, Feng YUE. Software testing resource allocation algorithm for dynamic changes in architecture [J]. Journal of Computer Applications, 2023, 43(7): 2261-2270. |
[15] | Xiaolin LI, Yusang JIANG. Task offloading algorithm for UAV-assisted mobile edge computing [J]. Journal of Computer Applications, 2023, 43(6): 1893-1899. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||