Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2592-2599.DOI: 10.11772/j.issn.1001-9081.2024071038
• Data science and technology • Previous Articles
Received:
2024-07-23
Revised:
2024-10-11
Accepted:
2024-10-11
Online:
2024-11-19
Published:
2025-08-10
Contact:
Yinglong MA
About author:
WANG Yi, born in 2000, M. S. candidate. His research interests include social recommendation, graph embedding.
Supported by:
通讯作者:
马应龙
作者简介:
王义(2000—),男,河北沧州人,硕士研究生,主要研究方向:社交推荐、图嵌入
基金资助:
CLC Number:
Yi WANG, Yinglong MA. Multi-task social item recommendation method based on dynamic adaptive generation of item graph[J]. Journal of Computer Applications, 2025, 45(8): 2592-2599.
王义, 马应龙. 基于项图动态适应性生成的多任务社交项推荐方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2592-2599.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024071038
数据集 | 用户数 | 项数 | 交互边数 | 社交数 | 交互密度/% |
---|---|---|---|---|---|
Yelp | 17 237 | 38 342 | 204 448 | 143 765 | 0.030 9 |
Ciao | 7 373 | 91 091 | 226 307 | 111 746 | 0.033 7 |
Tab. 1 Statistics of datasets
数据集 | 用户数 | 项数 | 交互边数 | 社交数 | 交互密度/% |
---|---|---|---|---|---|
Yelp | 17 237 | 38 342 | 204 448 | 143 765 | 0.030 9 |
Ciao | 7 373 | 91 091 | 226 307 | 111 746 | 0.033 7 |
数据集 | 方法 | HR@10 | HR@20 | HR@30 | Recall@10 | Recall@20 | Recall@30 | NDCG@10 | NDCG@20 | NDCG@30 |
---|---|---|---|---|---|---|---|---|---|---|
Yelp | NGCF | 0.035 17 | 0.061 64 | 0.084 14 | 0.024 33 | 0.042 93 | 0.059 31 | 0.013 57 | 0.018 66 | 0.022 44 |
LightGCN | 0.038 58 | 0.065 36 | 0.087 06 | 0.026 72 | 0.045 67 | 0.061 00 | 0.014 45 | 0.019 31 | 0.023 09 | |
Diffnet | 0.033 99 | 0.059 69 | 0.075 07 | 0.022 47 | 0.039 31 | 0.057 62 | 0.012 10 | 0.017 17 | 0.020 05 | |
SocialLGN | 0.038 95 | 0.066 25 | 0.026 93 | 0.045 60 | 0.014 72 | 0.019 74 | ||||
ECGN | 0.088 23 | 0.060 74 | 0.023 14 | |||||||
MGL | 0.034 44 | 0.060 90 | 0.083 72 | 0.024 54 | 0.043 72 | 0.060 31 | 0.013 51 | 0.018 75 | 0.022 58 | |
MTDAG | 0.040 83 | 0.069 42 | 0.091 36 | 0.028 35 | 0.048 57 | 0.064 30 | 0.015 43 | 0.021 04 | 0.024 51 | |
Ciao | NGCF | 0.090 42 | 0.130 15 | 0.160 14 | 0.038 67 | 0.056 26 | 0.070 88 | 0.026 30 | 0.031 64 | 0.035 86 |
LightGCN | 0.091 76 | 0.130 95 | 0.161 74 | 0.039 54 | 0.057 32 | 0.073 12 | 0.026 53 | 0.032 21 | 0.036 51 | |
Diffnet | 0.090 20 | 0.127 99 | 0.150 23 | 0.037 24 | 0.056 64 | 0.069 16 | 0.027 04 | 0.032 87 | 0.036 23 | |
SocialLGN | 0.095 94 | 0.139 06 | 0.040 49 | 0.062 11 | 0.078 54 | 0.028 48 | 0.034 26 | 0.037 90 | ||
ECGN | 0.170 23 | |||||||||
MGL | 0.089 61 | 0.124 04 | 0.153 44 | 0.036 59 | 0.054 28 | 0.067 19 | 0.025 62 | 0.029 13 | 0.033 20 | |
MTDAG | 0.100 11 | 0.147 10 | 0.177 96 | 0.042 61 | 0.064 32 | 0.081 58 | 0.029 54 | 0.036 52 | 0.040 93 |
Tab. 2 Experimental results of MTDAG and baseline methods on two datasets
数据集 | 方法 | HR@10 | HR@20 | HR@30 | Recall@10 | Recall@20 | Recall@30 | NDCG@10 | NDCG@20 | NDCG@30 |
---|---|---|---|---|---|---|---|---|---|---|
Yelp | NGCF | 0.035 17 | 0.061 64 | 0.084 14 | 0.024 33 | 0.042 93 | 0.059 31 | 0.013 57 | 0.018 66 | 0.022 44 |
LightGCN | 0.038 58 | 0.065 36 | 0.087 06 | 0.026 72 | 0.045 67 | 0.061 00 | 0.014 45 | 0.019 31 | 0.023 09 | |
Diffnet | 0.033 99 | 0.059 69 | 0.075 07 | 0.022 47 | 0.039 31 | 0.057 62 | 0.012 10 | 0.017 17 | 0.020 05 | |
SocialLGN | 0.038 95 | 0.066 25 | 0.026 93 | 0.045 60 | 0.014 72 | 0.019 74 | ||||
ECGN | 0.088 23 | 0.060 74 | 0.023 14 | |||||||
MGL | 0.034 44 | 0.060 90 | 0.083 72 | 0.024 54 | 0.043 72 | 0.060 31 | 0.013 51 | 0.018 75 | 0.022 58 | |
MTDAG | 0.040 83 | 0.069 42 | 0.091 36 | 0.028 35 | 0.048 57 | 0.064 30 | 0.015 43 | 0.021 04 | 0.024 51 | |
Ciao | NGCF | 0.090 42 | 0.130 15 | 0.160 14 | 0.038 67 | 0.056 26 | 0.070 88 | 0.026 30 | 0.031 64 | 0.035 86 |
LightGCN | 0.091 76 | 0.130 95 | 0.161 74 | 0.039 54 | 0.057 32 | 0.073 12 | 0.026 53 | 0.032 21 | 0.036 51 | |
Diffnet | 0.090 20 | 0.127 99 | 0.150 23 | 0.037 24 | 0.056 64 | 0.069 16 | 0.027 04 | 0.032 87 | 0.036 23 | |
SocialLGN | 0.095 94 | 0.139 06 | 0.040 49 | 0.062 11 | 0.078 54 | 0.028 48 | 0.034 26 | 0.037 90 | ||
ECGN | 0.170 23 | |||||||||
MGL | 0.089 61 | 0.124 04 | 0.153 44 | 0.036 59 | 0.054 28 | 0.067 19 | 0.025 62 | 0.029 13 | 0.033 20 | |
MTDAG | 0.100 11 | 0.147 10 | 0.177 96 | 0.042 61 | 0.064 32 | 0.081 58 | 0.029 54 | 0.036 52 | 0.040 93 |
[1] | FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 417-426. |
[2] | McPHERSON M, SMITH-LOVIN L, COOK J M. Birds of a feather: homophily in social networks[J]. Annual Review of Sociology, 2001, 27: 415-444. |
[3] | ANAGNOSTOPOULOS A, KUMAR R, MAHDIAN M. Influence and correlation in social networks[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 7-15. |
[4] | WANG S, HU L, WANG Y, et al. Graph learning based recommender systems: a review[C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 4644-4652. |
[5] | CHEN J, XIN X, LIANG X, et al. GDSRec: graph-based decentralized collaborative filtering for social recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4813-4824. |
[6] | YANG B, LEI Y, LIU J, et al. Social collaborative filtering by trust[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1633-1647. |
[7] | YU X, TU L, CHAI L, et al. Construction of implicit social network and recommendation between users and items via the ISR-RRM algorithm[J]. Expert Systems with Applications, 2024, 235: No.121229. |
[8] | HAN J, TAO Q, TANG Y, et al. DH-HGCN: dual homogeneity hypergraph convolutional network for multiple social recommendations[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 2190-2194. |
[9] | WU B, ZHONG L, LI H, et al. Efficient complementary graph convolutional network without negative sampling for item recommendation[J]. Knowledge-Based Systems, 2022, 256: No.109758. |
[10] | FAN W, MA Y, LI Q, et al. A graph neural network framework for social recommendations[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2033-2047. |
[11] | WEI C, LIANG J, LIU D, et al. Meta graph learning for long-tail recommendation[C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 2512-2522. |
[12] | LIAO J, ZHOU W, LUO F, et al. SocialLGN: light graph convolution network for social recommendation[J]. Information Sciences, 2022, 589: 595-607. |
[13] | WU L, SUN P, FU Y, et al. A neural influence diffusion model for social recommendation[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 235-244. |
[14] | LIU Y, CHEN L, HE X, et al. Modelling high-order social relations for item recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(9): 4385-4397. |
[15] | YANG L, LIU Z, DOU Y, et al. ConsisRec: enhancing GNN for social recommendation via consistent neighbor aggregation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 2141-2145. |
[16] | WANG L, ZHOU W, LIU L, et al. Deep adaptive collaborative graph neural network for social recommendation[J]. Expert Systems with Applications, 2023, 229(Pt A): No.120410. |
[17] | JIANG W, GAO X, XU G, et al. Challenging low homophily in social recommendation[C]// Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 3476-3484. |
[18] | DU J, YE Z, YAO L, et al. Socially-aware dual contrastive learning for cold-start recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1927-1932. |
[19] | FILHO R J R, WEHRMANN J, BARROS R C. Leveraging deep visual features for content-based movie recommender systems[C]// Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 604-611. |
[20] | ZHOU Z, ZHANG L, YANG N. Contrastive collaborative filtering for cold-start item recommendation[C]// Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 928-937. |
[21] | HUANG F, WANG Z, HUANG X, et al. Aligning distillation for cold-start item recommendation[C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 1147-1157. |
[22] | ZHU Y, XIE R, ZHUANG F, et al. Learning to warm up cold item embeddings for cold-start recommendation with meta scaling and shifting networks[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1167-1176. |
[23] | ZHOU W, HAQ A U, QIU L, et al. Multi-view social recommendation via matrix factorization with sub-linear convergence rate[J]. Expert Systems with Applications, 2024, 237(Pt C): No.121687. |
[24] | ZHANG M, YIN R, YANG Z, et al. Advances and challenges of multi-task learning method in recommender system: a survey[EB/OL]. [2024-03-17].. |
[25] | FENG X, LIU Z, WU W, et al. Social recommendation via deep neural network-based multi-task learning[J]. Expert Systems with Applications, 2022, 206: No.117755. |
[26] | ZHANG Y, CHENG D Z, YAO T, et al. A model of two tales: dual transfer learning framework for improved long-tail item recommendation[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 2220-2231. |
[27] | CHEN H, WANG Z, HUANG F, et al. Generative adversarial framework for cold-start item recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 2565-2571. |
[28] | YU D, ZHANG R, JIANG Z, et al. Graph-revised convolutional network[C]// Proceedings of the 2020 European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 12459. Cham: Springer, 2021: 378-393. |
[29] | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
[30] | WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. |
[31] | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2024-03-23].. |
[32] | LI J, LU K, HUANG Z, et al. On both cold-start and long-tail recommendation with social data[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(1): 194-208. |
[1] | Yinchuan TU, Yong GUO, Heng MAO, Yi REN, Jianfeng ZHANG, Bao LI. Evaluation of training efficiency and training performance of graph neural network models based on distributed environment [J]. Journal of Computer Applications, 2025, 45(8): 2409-2420. |
[2] | Danyang CHEN, Changlun ZHANG. Multi-scale decorrelation graph convolutional network model [J]. Journal of Computer Applications, 2025, 45(7): 2180-2187. |
[3] | Yuelan ZHANG, Jing SU, Hangyu ZHAO, Baili YANG. Multi-view knowledge-aware and interactive distillation recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(7): 2211-2220. |
[4] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
[5] | Zimo ZHANG, Xuezhuan ZHAO. Multi-scale sparse graph guided vision graph neural networks [J]. Journal of Computer Applications, 2025, 45(7): 2188-2194. |
[6] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
[7] | Lan YOU, Yuang ZHANG, Yuan LIU, Zhijun CHEN, Wei WANG, Xing ZENG, Zhangwei HE. Developer recommendation for open-source projects based on collaborative contribution network [J]. Journal of Computer Applications, 2025, 45(4): 1213-1222. |
[8] | Weichao DANG, Chujun SONG, Gaimei GAO, Chunxia LIU. Multi-behavior recommendation based on cascading residual graph convolutional network [J]. Journal of Computer Applications, 2025, 45(4): 1223-1231. |
[9] | Weichao DANG, Xinyu WEN, Gaimei GAO, Chunxia LIU. Multi-view and multi-scale contrastive learning for graph collaborative filtering [J]. Journal of Computer Applications, 2025, 45(4): 1061-1068. |
[10] | Cong WANG, Yancui SHI. Group recommendation model by graph neural network based on multi-perspective learning [J]. Journal of Computer Applications, 2025, 45(4): 1205-1212. |
[11] | Chengzhe YUAN, Guohua CHEN, Dingding LI, Yuan ZHU, Ronghua LIN, Hao ZHONG, Yong TANG. ScholatGPT: a large language model for academic social networks and its intelligent applications [J]. Journal of Computer Applications, 2025, 45(3): 755-764. |
[12] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[13] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. |
[14] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[15] | Liang ZHU, Jingzhe MU, Hongqiang ZUO, Jingzhong GU, Fubao ZHU. Location privacy-preserving recommendation scheme based on federated graph neural network [J]. Journal of Computer Applications, 2025, 45(1): 136-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||