Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2798-2805.DOI: 10.11772/j.issn.1001-9081.2024081159
• Artificial intelligence • Previous Articles
Received:
2024-08-16
Revised:
2024-10-05
Accepted:
2024-10-16
Online:
2024-11-07
Published:
2025-09-10
Contact:
Shuying WANG
About author:
REN Dengran, born in 1999, M. S. candidate. His research interests include natural language processing, knowledge graph.
Supported by:
通讯作者:
王淑营
作者简介:
任登燃(1999—),男,四川达州人,硕士研究生,主要研究方向:自然语言处理、知识图谱
基金资助:
CLC Number:
Dengran REN, Shuying WANG. Nested named entity recognition model for wind power equipment based on differential boundary enhancement[J]. Journal of Computer Applications, 2025, 45(9): 2798-2805.
任登燃, 王淑营. 基于差分边界增强的风电装备嵌套命名实体识别模型[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2798-2805.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081159
数据集 | 句子数 | 句子平均长度 | 实体数 | 嵌套比例/% | |
---|---|---|---|---|---|
ACE2004 | Train | 6 200 | 22.50 | 22 201 | 23.07 |
Dev | 745 | 23.02 | 2 514 | 21.44 | |
Test | 812 | 23.05 | 3 035 | 23.00 | |
ACE2005 | Train | 7 291 | 20.55 | 25 300 | 20.01 |
Dev | 979 | 20.17 | 3 321 | 18.31 | |
Test | 1 060 | 18.49 | 3 099 | 19.04 | |
Genia | Train | 5 038 | 26.49 | 46 203 | 9.35 |
Dev | 1 765 | 25.78 | 4 714 | 9.36 | |
Test | 1 732 | 27.06 | 5 119 | 11.81 | |
WPEF | Train | 1 615 | 72.14 | 14 656 | 39.11 |
Dev | 203 | 71.96 | 1 878 | 39.24 | |
Test | 201 | 71.01 | 1 737 | 37.54 |
Tab. 1 Statistical information of datasets
数据集 | 句子数 | 句子平均长度 | 实体数 | 嵌套比例/% | |
---|---|---|---|---|---|
ACE2004 | Train | 6 200 | 22.50 | 22 201 | 23.07 |
Dev | 745 | 23.02 | 2 514 | 21.44 | |
Test | 812 | 23.05 | 3 035 | 23.00 | |
ACE2005 | Train | 7 291 | 20.55 | 25 300 | 20.01 |
Dev | 979 | 20.17 | 3 321 | 18.31 | |
Test | 1 060 | 18.49 | 3 099 | 19.04 | |
Genia | Train | 5 038 | 26.49 | 46 203 | 9.35 |
Dev | 1 765 | 25.78 | 4 714 | 9.36 | |
Test | 1 732 | 27.06 | 5 119 | 11.81 | |
WPEF | Train | 1 615 | 72.14 | 14 656 | 39.11 |
Dev | 203 | 71.96 | 1 878 | 39.24 | |
Test | 201 | 71.01 | 1 737 | 37.54 |
数据集 | 批次大小 | 训练轮次 | 学习率 | 双仿射 特征数 | 多头数 | 空洞扩展块 | 相对距离维度 | 实体类别维度 | 语义特征维度 | 神经元 丢弃率 | 解码器 阈值 |
---|---|---|---|---|---|---|---|---|---|---|---|
ACE2004 | 8 | 50 | 1E-03 | 512 | 2 | [ | 20 | 20 | 256 | 0.3 | 0.6 |
ACE2005 | 8 | 30 | 1E-03 | 256 | 2 | [ | 20 | 20 | 128 | 0.5 | 0.8 |
Genia | 8 | 8 | 5E-04 | 512 | 4 | [ | 20 | 20 | 128 | 0.4 | 0.5 |
WPEF | 4 | 30 | 1E-03 | 512 | 4 | [ | 20 | 20 | 200 | 0.4 | 0.8 |
Tab. 2 Model related hyperparameters
数据集 | 批次大小 | 训练轮次 | 学习率 | 双仿射 特征数 | 多头数 | 空洞扩展块 | 相对距离维度 | 实体类别维度 | 语义特征维度 | 神经元 丢弃率 | 解码器 阈值 |
---|---|---|---|---|---|---|---|---|---|---|---|
ACE2004 | 8 | 50 | 1E-03 | 512 | 2 | [ | 20 | 20 | 256 | 0.3 | 0.6 |
ACE2005 | 8 | 30 | 1E-03 | 256 | 2 | [ | 20 | 20 | 128 | 0.5 | 0.8 |
Genia | 8 | 8 | 5E-04 | 512 | 4 | [ | 20 | 20 | 128 | 0.4 | 0.5 |
WPEF | 4 | 30 | 1E-03 | 512 | 4 | [ | 20 | 20 | 200 | 0.4 | 0.8 |
模型 | ACE2004 | ACE2005 | ||||
---|---|---|---|---|---|---|
P | R | F1分数 | P | R | F1分数 | |
Diffusion* | 86.44 | 87.38 | 86.91 | 84.75 | 87.35 | 86.04 |
BS* | 86.54 | 87.51 | 87.02 | 85.59 | 87.41 | 86.49 |
W2NER* | 86.68 | 87.05 | 86.87 | 85.56 | 87.93 | 86.73 |
CNN-NER* | 86.68 | 87.94 | 87.31 | 85.44 | 87.71 | 86.56 |
DiFiNet* | 87.79 | 87.87 | 87.83 | 86.6 | 87.22 | 86.61 |
DBE-NER | 87.85 | 87.91 | 87.88 | 86.49 | 87.77 | 87.12 |
Tab. 3 Model performance on ACE2004 and ACE2005 datasets
模型 | ACE2004 | ACE2005 | ||||
---|---|---|---|---|---|---|
P | R | F1分数 | P | R | F1分数 | |
Diffusion* | 86.44 | 87.38 | 86.91 | 84.75 | 87.35 | 86.04 |
BS* | 86.54 | 87.51 | 87.02 | 85.59 | 87.41 | 86.49 |
W2NER* | 86.68 | 87.05 | 86.87 | 85.56 | 87.93 | 86.73 |
CNN-NER* | 86.68 | 87.94 | 87.31 | 85.44 | 87.71 | 86.56 |
DiFiNet* | 87.79 | 87.87 | 87.83 | 86.6 | 87.22 | 86.61 |
DBE-NER | 87.85 | 87.91 | 87.88 | 86.49 | 87.77 | 87.12 |
模型 | P | R | F1分数 |
---|---|---|---|
DiffusionNER* | 79.18 | 77.93 | 78.55 |
BS* | 80.31 | 78.59 | 79.44 |
W2NER | 81.58 | 79.11 | 80.32 |
CNN-NER | 81.52 | 79.12 | 80.33 |
DiFiNet* | 81.42 | 79.55 | 80.47 |
DBE-NER | 81.65 | 79.96 | 80.79 |
Tab. 4 Model performance on Genia dataset
模型 | P | R | F1分数 |
---|---|---|---|
DiffusionNER* | 79.18 | 77.93 | 78.55 |
BS* | 80.31 | 78.59 | 79.44 |
W2NER | 81.58 | 79.11 | 80.32 |
CNN-NER | 81.52 | 79.12 | 80.33 |
DiFiNet* | 81.42 | 79.55 | 80.47 |
DBE-NER | 81.65 | 79.96 | 80.79 |
模型 | P | R | F1分数 |
---|---|---|---|
DiffusionNER* | 82.85 | 88.54 | 85.55 |
BS* | 82.41 | 87.90 | 85.01 |
W2NER* | 86.18 | 87.69 | 85.96 |
CNN-NER* | 82.92 | 89.52 | 86.09 |
DiFiNet* | 83.57 | 89.06 | 86.22 |
DBE-NER | 86.81 | 87.21 | 87.01 |
Tab. 5 Model performance on WPEF dataset
模型 | P | R | F1分数 |
---|---|---|---|
DiffusionNER* | 82.85 | 88.54 | 85.55 |
BS* | 82.41 | 87.90 | 85.01 |
W2NER* | 86.18 | 87.69 | 85.96 |
CNN-NER* | 82.92 | 89.52 | 86.09 |
DiFiNet* | 83.57 | 89.06 | 86.22 |
DBE-NER | 86.81 | 87.21 | 87.01 |
消融模块 | Genia | WPEF |
---|---|---|
w.o 多头机制 | 80.30 | 86.29 |
w.o 融合距离和类型 | 80.39 | 86.45 |
w.o 边界语义增强器 | 80.19 | 86.49 |
w.o 实体边界探测器 | 80.59 | 86.28 |
w.o CBAM | 80.64 | 86.71 |
DBE-NER | 80.79 | 87.01 |
Tab. 6 Comparison of F1 score after module ablation
消融模块 | Genia | WPEF |
---|---|---|
w.o 多头机制 | 80.30 | 86.29 |
w.o 融合距离和类型 | 80.39 | 86.45 |
w.o 边界语义增强器 | 80.19 | 86.49 |
w.o 实体边界探测器 | 80.59 | 86.28 |
w.o CBAM | 80.64 | 86.71 |
DBE-NER | 80.79 | 87.01 |
[1] | 张晓艳,王挺,陈火旺. 命名实体识别研究[J]. 计算机科学, 2005, 32(4):44-48. |
ZHANG X Y, WANG T, CHEN H W. Research on named entity recognition [J]. Computer Science, 2005, 32(4): 44-48. | |
[2] | 高翔,王石,朱俊武,等. 命名实体识别任务综述[J]. 计算机科学, 2023, 50(6A): No.220200119. |
GAO X, WANG S, ZHU J W, et al. Overview of named entity recognition tasks [J]. Computer Science, 2023, 50(6A): No.220200119. | |
[3] | 李莉,奚雪峰,盛胜利,等. 深度学习中文命名实体识别研究进展[J]. 计算机工程与应用, 2023, 59(24): 46-69. |
LI L, XI X F, SHENG S L, et al. Research progress on named entity recognition in Chinese deep learning [J]. Computer Engineering and Applications, 2023, 59(24): 46-69. | |
[4] | LIU X, CHEN H, XIA W. Overview of named entity recognition[J]. Journal of Contemporary Educational Research, 2022, 6(5): 65-68. |
[5] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
[6] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
[7] | 余诗媛,郭淑明,黄瑞阳,等. 嵌套命名实体识别研究进展[J]. 计算机科学, 2021, 48(11A): 1-10. |
YU S Y, GUO S M, HUANG R Y, et al. Overview of nested named entity recognition[J]. Computer Science, 2021, 48(11A): 1-10. | |
[8] | LU W, ROTH D. Joint mention extraction and classification with mention hypergraphs [C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 857-867. |
[9] | MUIS A O, LU W. Labeling gaps between words: recognizing overlapping mentions with mention separators [C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 2608-2618. |
[10] | KATIYAR A, CARDIE C. Nested named entity recognition revisited [C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg: ACL, 2018: 861-871. |
[11] | JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition [C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg: ACL, 2018: 1446-1459. |
[12] | STRAKOVÁ J, STRAKA M, HAJIC J. Neural architectures for nested NER through linearization [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 5326-5331. |
[13] | LI X, FENG J, MENG Y, et al. A unified MRC framework for named entity recognition [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5849-5859. |
[14] | SOHRAB M G, MIWA M. Deep exhaustive model for nested named entity recognition [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2843-2849. |
[15] | YU J, BOHNET B, POESIO M. Named entity recognition as dependency parsing [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6470-6476. |
[16] | ZHU E, LI J. Boundary smoothing for named entity recognition[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022:7096-7108. |
[17] | YUAN Z, TAN C, HUANG S, et al. Fusing heterogeneous factors with triaffine mechanism for nested named entity recognition [C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 3174-3186. |
[18] | LI J, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 10965-10973. |
[19] | YAN H, SUN Y, LI X, et al. An embarrassingly easy but strong baseline for nested named entity recognition [C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2023: 1442-1452. |
[20] | DODDINGTON G, MITCHELL A, PRZYBOCKI M, et al. The Automatic Content Extraction (ACE) program — tasks, data, and evaluation [C]// Proceedings of the 4th International Conference on Language Resources and Evaluation. Paris: European Language Resources Association, 2004: 837-840. |
[21] | WALKER C, STRASSEL C, MEDERO S, et al. ACE2005 multilingual training corpus [DS/OL]. [2024-04-10].. |
[22] | KIM J D, OHTA T, TATEISI Y, et al. GENIA corpus — a semantically annotated corpus for bio-text mining [J]. Bioinformatics, 2003, 19(S1): i180-i182. |
[23] | SHEN Y, SONG K, TAN X, et al. DiffusionNER: boundary diffusion for named entity recognition [C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2023: 3875-3890. |
[24] | CAI Y, LIU Q, GAN Y, et al. DiFiNet: boundary-aware semantic differentiation and filtration network for nested named entity recognition [C]// Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2024: 6455-6471. |
[1] | Li LI, Han SONG, Peihe LIU, Hanlin CHEN. Named entity recognition for sensitive information based on data augmentation and residual networks [J]. Journal of Computer Applications, 2025, 45(9): 2790-2797. |
[2] | Jing YU, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Sequence labeling optimization method combined with entity boundary offset [J]. Journal of Computer Applications, 2025, 45(8): 2522-2529. |
[3] | Lixiao ZHANG, Yao MA, Yuli YANG, Dan YU, Yongle CHEN. Large-scale IoT binary component identification based on named entity recognition [J]. Journal of Computer Applications, 2025, 45(7): 2288-2295. |
[4] | Zhangjie XU, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Nested named entity recognition combined with boundary generation by multi-objective learning [J]. Journal of Computer Applications, 2025, 45(7): 2229-2236. |
[5] | Jie HU, Shuaixing WU, Zhilan CAO, Yan ZHANG. Named entity recognition model based on global information fusion and multi-dimensional relation perception [J]. Journal of Computer Applications, 2025, 45(5): 1511-1519. |
[6] | Biqing ZENG, Guangbin ZHONG, James Zhiqing WEN. Few-shot named entity recognition based on decomposed fuzzy span [J]. Journal of Computer Applications, 2025, 45(5): 1504-1510. |
[7] | Xueqiang LYU, Tao WANG, Xindong YOU, Ge XU. HTLR: named entity recognition framework with hierarchical fusion of multi-knowledge [J]. Journal of Computer Applications, 2025, 45(1): 40-47. |
[8] | Huanliang SUN, Siyi WANG, Junling LIU, Jingke XU. Help-seeking information extraction model for flood event in social media data [J]. Journal of Computer Applications, 2024, 44(8): 2437-2445. |
[9] | Qing LIU, Yanping CHEN, Anqi ZOU, Ruizhang HUANG, Yongbin QIN. Boundary-aware approach to machine reading comprehension [J]. Journal of Computer Applications, 2024, 44(7): 2004-2010. |
[10] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[11] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[12] | Bin XIAO, Yun GAN, Min WANG, Xingpeng ZHANG, Zhaoxing WANG. Network abnormal traffic detection based on port attention and convolutional block attention module [J]. Journal of Computer Applications, 2024, 44(4): 1027-1034. |
[13] | Yongfeng DONG, Jiaming BAI, Liqin WANG, Xu WANG. Chinese named entity recognition combining prior knowledge and glyph features [J]. Journal of Computer Applications, 2024, 44(3): 702-708. |
[14] | Yingjie GAO, Min LIN, Siriguleng, Bin LI, Shujun ZHANG. Prompt learning method for ancient text sentence segmentation and punctuation based on span-extracted prototypical network [J]. Journal of Computer Applications, 2024, 44(12): 3815-3822. |
[15] | Jie LONG, Liang XIE, Haijiao XU. Integrated deep reinforcement learning portfolio model [J]. Journal of Computer Applications, 2024, 44(1): 300-310. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||