Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 3045-3056.DOI: 10.11772/j.issn.1001-9081.2024081234
• Frontier and comprehensive applications • Previous Articles
Jinyang HUANG1,2, Fengqi CUI2,3,4, Changxiu MA5, Wendong FAN1, Meng LI1(), Jingyu LI4, Xiao SUN1,2,4, Linsheng HUANG6, Zhi LIU7
Received:
2024-09-02
Revised:
2024-11-14
Accepted:
2024-11-19
Online:
2024-11-25
Published:
2025-09-10
Contact:
Meng LI
About author:
HUANG Jinyang, born in 1994, Ph. D., lecturer. His research interests include multimodal human factor perception, artificial intelligence.Supported by:
黄锦阳1,2, 崔丰麒2,3,4, 马长秀5, 樊文东1, 李萌1(), 李经宇4, 孙晓1,2,4, 黄林生6, 刘志7
通讯作者:
李萌
作者简介:
黄锦阳(1994—),男,安徽安庆人,讲师,博士,CCF会员,主要研究方向:多模态人因感知、人工智能基金资助:
CLC Number:
Jinyang HUANG, Fengqi CUI, Changxiu MA, Wendong FAN, Meng LI, Jingyu LI, Xiao SUN, Linsheng HUANG, Zhi LIU. Sleep apnea detection based on universal wristband[J]. Journal of Computer Applications, 2025, 45(9): 3045-3056.
黄锦阳, 崔丰麒, 马长秀, 樊文东, 李萌, 李经宇, 孙晓, 黄林生, 刘志. 基于通用手环的睡眠呼吸暂停检测[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 3045-3056.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081234
方法 | 采集设备及穿戴方式 | 采集数据模态 | 采样率 | 供电容量及数据采集时间 |
---|---|---|---|---|
基于 运动手环 | 使用手环,佩戴于手腕处,类似于手表的形式 | 加速度信号、陀螺仪信号、光电容积脉搏波信号、GPS定位信号、温度信号、光敏传感信号 | 加速度采样率:50~100 Hz 输出的心跳频率:1~5 Hz | 电池容量:100~300 mAh 数据采集时间:5~7 d |
基于指环 | 使用指环,直接套在手指上,便于携带且不易察觉 | 加速度信号、陀螺仪信号、光电容积脉搏波信号 | 加速度采样率:20~50 Hz 输出的心跳频率:1~2 Hz | 电池容量:20~50 mAh 数据采集时间:1~3 d |
基于腕带 | 使用腕带,同样佩戴于手腕上,与运动手环类似,但更简单,没有显示屏或者仅有简单的LED指示灯 | 加速度信号、陀螺仪信号、光电容积脉搏波信号 | 加速度采样率:20~50 Hz 输出的心跳频率:1 Hz左右 | 电池容量:50~100 mAh 数据采集时间:3~7 d |
Tab. 1 Comparison of sleep apnea detection algorithms based on different wearing methods in data collection
方法 | 采集设备及穿戴方式 | 采集数据模态 | 采样率 | 供电容量及数据采集时间 |
---|---|---|---|---|
基于 运动手环 | 使用手环,佩戴于手腕处,类似于手表的形式 | 加速度信号、陀螺仪信号、光电容积脉搏波信号、GPS定位信号、温度信号、光敏传感信号 | 加速度采样率:50~100 Hz 输出的心跳频率:1~5 Hz | 电池容量:100~300 mAh 数据采集时间:5~7 d |
基于指环 | 使用指环,直接套在手指上,便于携带且不易察觉 | 加速度信号、陀螺仪信号、光电容积脉搏波信号 | 加速度采样率:20~50 Hz 输出的心跳频率:1~2 Hz | 电池容量:20~50 mAh 数据采集时间:1~3 d |
基于腕带 | 使用腕带,同样佩戴于手腕上,与运动手环类似,但更简单,没有显示屏或者仅有简单的LED指示灯 | 加速度信号、陀螺仪信号、光电容积脉搏波信号 | 加速度采样率:20~50 Hz 输出的心跳频率:1 Hz左右 | 电池容量:50~100 mAh 数据采集时间:3~7 d |
start_time | end_time | SPO2 | BPM | sleep_stage | PSG |
---|---|---|---|---|---|
1705413120 | 1705413180 | 95 | 72 | a | 0 |
1705413240 | 1705413300 | 94 | 75 | b | 0 |
1705413360 | 1705413420 | 92 | 78 | a | 1 |
1705413480 | 1705413540 | 90 | 82 | c | 2 |
1705413600 | 1705413660 | 94 | 74 | a | 0 |
Tab. 2 Data examples in dataset
start_time | end_time | SPO2 | BPM | sleep_stage | PSG |
---|---|---|---|---|---|
1705413120 | 1705413180 | 95 | 72 | a | 0 |
1705413240 | 1705413300 | 94 | 75 | b | 0 |
1705413360 | 1705413420 | 92 | 78 | a | 1 |
1705413480 | 1705413540 | 90 | 82 | c | 2 |
1705413600 | 1705413660 | 94 | 74 | a | 0 |
方法 | 准确率/% | 精确率/% | 召回率/% | F1/% | 训练时间/min |
---|---|---|---|---|---|
MLR | 75.38 | 81.37 | 71.02 | 75.88 | 3.9 |
KNN | 84.73 | 82.92 | 77.59 | 80.11 | 4.1 |
RF | 92.21 | 90.65 | 89.63 | 90.07 | 3.6 |
GRU | 93.68 | 94.36 | 93.97 | 94.08 | 5.4 |
LSTM | 90.33 | 89.21 | 90.54 | 89.74 | 13.4 |
DBN | 87.43 | 88.12 | 87.44 | 87.99 | 15.2 |
Tab. 3 Comparison of apnea classification results of different models
方法 | 准确率/% | 精确率/% | 召回率/% | F1/% | 训练时间/min |
---|---|---|---|---|---|
MLR | 75.38 | 81.37 | 71.02 | 75.88 | 3.9 |
KNN | 84.73 | 82.92 | 77.59 | 80.11 | 4.1 |
RF | 92.21 | 90.65 | 89.63 | 90.07 | 3.6 |
GRU | 93.68 | 94.36 | 93.97 | 94.08 | 5.4 |
LSTM | 90.33 | 89.21 | 90.54 | 89.74 | 13.4 |
DBN | 87.43 | 88.12 | 87.44 | 87.99 | 15.2 |
[1] | 吕建行,李玉榕,陈建国,等. 两步式自适应阈值法滤除心电信号中运动伪迹[J]. 电子学报, 2024, 52(10): 3493-3506. |
LYU J H, LI Y R, CHEN J G, et al. ECG motion artifact filtering based on two-stage adaptive threshold rules [J]. Acta Electronica Sinica, 2024, 52(10): 3493-3506. | |
[2] | TYAGI P K, AGRAWAL D. Automatic detection of sleep apnea from a single-lead ECG signal based on spiking neural network model [J]. Computers in Biology and Medicine, 2024, 179: No.108877. |
[3] | 赵津,宋文爱,邰隽,等. 儿童阻塞性睡眠呼吸暂停计算机人脸辅助诊断综述[J]. 计算机应用, 2021, 41(11): 3394-3401. |
ZHAO J, SONG W A, TAI J, et al. Review of computer-aided face diagnosis for obstructive sleep apnea in children [J]. Journal of Computer Applications, 2021, 41(11): 3394-3401. | |
[4] | LIN Y, WU Y, LIN Q, et al. Objective sleep duration and all-cause mortality among people with obstructive sleep apnea [J]. JAMA Network Open, 2023, 6(12): No.e2346085. |
[5] | GUPTA K, BAJAJ V, ANSARI I A. OSACN-Net: automated classification of sleep apnea using deep learning model and smoothed Gabor spectrograms of ECG signal [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.4002109. |
[6] | AZIMI H, BOUCHARD M, GOUBRAN R, et al. Unobtrusive screening of central sleep apnea from pressure sensors measurements: a patient-specific longitudinal study [J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3282-3296. |
[7] | THORNTON C S, TSAI W H, SANTANA M J, et al. Effects of wait times on treatment adherence and clinical outcomes in patients with severe sleep-disordered breathing: a secondary analysis of a noninferiority randomized clinical trial [J]. JAMA Network Open, 2020, 3(4): No.e203088. |
[8] | BAHRAMI M, FOROUZANFAR M. Sleep apnea detection from single-lead ECG: a comprehensive analysis of machine learning and deep learning algorithms [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.4003011. |
[9] | FENG K, QIN H, WU S, et al. A sleep apnea detection method based on unsupervised feature learning and single-lead electrocardiogram [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: No.4000912. |
[10] | LEE P, CHANDEL N S, SIMON M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond [J]. Nature Reviews Molecular Cell Biology, 2020, 21(5): 268-283. |
[11] | WEN D, ZHANG X, LEI J. Consumers’ perceived attitudes to wearable devices in health monitoring in China: a survey study[J]. Computer Methods and Programs in Biomedicine, 2017, 140: 131-137. |
[12] | ÁLVAREZ D, CEREZO-HERNÁNDEZ A, CRESPO A, et al. A machine learning-based test for adult sleep apnoea screening at home using oximetry and airflow [J]. Scientific Reports, 2020, 10: No.5332. |
[13] | YOOK S, KIM D, GUPTE C, et al. Deep learning of sleep apnea-hypopnea events for accurate classification of obstructive sleep apnea and determination of clinical severity [J]. Sleep Medicine, 2024, 114: 211-219. |
[14] | HU S, WANG Y, LIU J, et al. Semi-supervised learning for low-cost personalized obstructive sleep apnea detection using unsupervised deep learning and single-lead electrocardiogram [J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(11): 5281-5292. |
[15] | YÜCELBAŞ Ş, YÜCELBAŞ C, TEZEL G, et al. Identification of full-night sleep parameters using morphological features of ECG signals: a practical alternative to EEG and EOG signals [J]. Biomedical Signal Processing and Control, 2024, 88: No.105633. |
[16] | VAQUERIZO-VILLAR F, GUTIÉRREZ-TOBAL G C, CALVO E, et al. An explainable deep-learning model to stage sleep states in children and propose novel EEG-related patterns in sleep apnea[J]. Computers in Biology and Medicine, 2023, 165: No.107419. |
[17] | 宋钰丹,王晶,王雪徽,等. 基于自适应多任务学习的睡眠生理时序分类方法[J]. 计算机应用, 2024, 44(2): 654-662. |
SONG Y D, WANG J, WANG X H, et al. Sleep physiological time series classification method based on adaptive multi-task learning [J]. Journal of Computer Applications, 2024, 44(2): 654-662. | |
[18] | FURLOTTI G. Obstructive sleep apnea detection: exploring neural activity variations through statistical analysis and machine learning [D]. Turin: Politecnico di Torino, 2023. |
[19] | TRAN T D L, NGUYEN T H T, LIN S Y, et al. Late breaking abstract-detecting sleep apnea in advance using machine learning and ECG-deprived spectrogram during CPAP titration [J]. European Respiratory Journal, 2023, 62(S67): No.PA1288. |
[20] | HUANG J, LIU B, MIAO C, et al. PhyFinAtt: an undetectable attack framework against PHY layer fingerprint-based WiFi authentication [J]. IEEE Transactions on Mobile Computing, 2024, 23(7): 7753-7770. |
[21] | ABD-ALRAZAQ A, ASLAM H, ALSAAD R, et al. Detection of sleep apnea using wearable AI: systematic review and meta-analysis [J]. Journal of Medical Internet Research, 2024, 26: No.e58187. |
[22] | PILLAR G, BERALL M, BERRY R B, et al. Detection of common arrhythmias by the Watch-PAT: expression of electrical arrhythmias by pulse recording [J]. Nature and Science of Sleep, 2022, 14: 751-763. |
[23] | ZHANG Z, SOWHO M, OTVOS T, et al. A comparison of automated and manual sleep staging and respiratory event recognition in a portable sleep diagnostic device with in-lab sleep study [J]. Journal of Clinical Sleep Medicine, 2020, 16(4): 563-573. |
[24] | BROWN J, YAZDI F T, JODARI-KARIMI M, et al. Obstructive sleep apnea and hypertension: updates to a critical relationship[J]. Current Hypertension Reports, 2022, 24(6): 173-184. |
[25] | CHEN Y, WANG W, GUO Y, et al. A single-center validation of the accuracy of a photoplethysmography-based smartwatch for screening obstructive sleep apnea [J]. Nature and Science of Sleep, 2021: 1533-1544. |
[26] | HUANG J, LIU B, MIAO C, et al. PhaseAnti: an anti-interference WiFi-based activity recognition system using interference-independent phase component [J]. IEEE Transactions on Mobile Computing, 2023, 22(5): 2938-2954. |
[27] | PENZEL T, MOODY G B, MARK R G, et al. The apnea-ECG database [C]// Proceedings of the Computers in Cardiology 2000. Piscataway: IEEE, 2000: 255-258. |
[28] | O’REILLY C, GOSSELIN N, CARRIER J, et al. Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research [J]. Journal of Sleep Research, 2014, 23(6): 628-635. |
[1] | Chao SHI, Yuxin ZHOU, Qian FU, Wanyu TANG, Ling HE, Yuanyuan LI. Action recognition algorithm for ADHD patients using skeleton and 3D heatmap [J]. Journal of Computer Applications, 2025, 45(9): 3036-3044. |
[2] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
[3] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
[4] | Jiaxiang ZHANG, Xiaoming LI, Jiahui ZHANG. Few-shot object detection algorithm based on new category feature enhancement and metric mechanism [J]. Journal of Computer Applications, 2025, 45(9): 2984-2992. |
[5] | Panfeng JING, Yudong LIANG, Chaowei LI, Junru GUO, Jinyu GUO. Semi-supervised image dehazing algorithm based on teacher-student learning [J]. Journal of Computer Applications, 2025, 45(9): 2975-2983. |
[6] | Xuejin WANG, Leilei HUANG, Zhenhui ZHONG. Noise and semantic prior guided low-light image enhancement algorithm [J]. Journal of Computer Applications, 2025, 45(9): 2966-2974. |
[7] | Jin LI, Liqun LIU. SAR and visible image fusion based on residual Swin Transformer [J]. Journal of Computer Applications, 2025, 45(9): 2949-2956. |
[8] | Chao LIU, Yanhua YU. Knowledge-aware recommendation model combining denoising strategy and multi-view contrastive learning [J]. Journal of Computer Applications, 2025, 45(9): 2827-2837. |
[9] | Dengran REN, Shuying WANG. Nested named entity recognition model for wind power equipment based on differential boundary enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2798-2805. |
[10] | Li LI, Han SONG, Peihe LIU, Hanlin CHEN. Named entity recognition for sensitive information based on data augmentation and residual networks [J]. Journal of Computer Applications, 2025, 45(9): 2790-2797. |
[11] | Binbin ZHANG, Yongbin QIN, Ruizhang HUANG, Yanping CHEN. Judgment document summarization method combining large language model and dynamic prompts [J]. Journal of Computer Applications, 2025, 45(9): 2783-2789. |
[12] | Yiming LIANG, Jing FAN, Wenze CHAI. Multi-scale feature fusion sentiment classification based on bidirectional cross attention [J]. Journal of Computer Applications, 2025, 45(9): 2773-2782. |
[13] | Bing YIN, Zhenhua LING, Yin LIN, Changfeng XI, Ying LIU. Emotion recognition method compatible with missing modal reasoning [J]. Journal of Computer Applications, 2025, 45(9): 2764-2772. |
[14] | Penghuan QU, Wei WEI, Jing YAN, Feng WANG. Dual imputation based incomplete multi-view metric learning [J]. Journal of Computer Applications, 2025, 45(9): 2755-2763. |
[15] | Wei ZHANG, Zhongwei GONG, Zhixin LI, Peihua LUO, Lingling SONG. Learning behavior boosted knowledge tracing model [J]. Journal of Computer Applications, 2025, 45(9): 2747-2754. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||