Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 3036-3044.DOI: 10.11772/j.issn.1001-9081.2024091304
• Frontier and comprehensive applications • Previous Articles
Chao SHI1, Yuxin ZHOU1, Qian FU1, Wanyu TANG1, Ling HE1, Yuanyuan LI2()
Received:
2024-09-14
Revised:
2025-01-15
Accepted:
2025-01-24
Online:
2025-03-24
Published:
2025-09-10
Contact:
Yuanyuan LI
About author:
SHI Chao, born in 1997, M. S. candidate. His research interests include image processing.Supported by:
石超1, 周昱昕1, 扶倩1, 唐万宇1, 何凌1, 李元媛2()
通讯作者:
李元媛
作者简介:
石超(1997—),男,贵州铜仁人,硕士研究生,主要研究方向:图像处理基金资助:
CLC Number:
Chao SHI, Yuxin ZHOU, Qian FU, Wanyu TANG, Ling HE, Yuanyuan LI. Action recognition algorithm for ADHD patients using skeleton and 3D heatmap[J]. Journal of Computer Applications, 2025, 45(9): 3036-3044.
石超, 周昱昕, 扶倩, 唐万宇, 何凌, 李元媛. 基于骨架和3D热图的注意缺陷多动障碍患者动作识别算法[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 3036-3044.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024091304
模块/步骤 | 输入维度 | 输出维度 | 说明 |
---|---|---|---|
视频输入 | T=60为帧数,H=W=224、C=3分别为帧的高度、宽度和通道数 | ||
2D骨架提取 | P=17/25/133为关键点数量 | ||
3D热图构建 | K=17/25/133,即每个关节对应一个高斯热图 | ||
3D-CNN特征提取 | 提取视频的时空特征,D1=256为特征维度 | ||
GCN特征提取 | 提取骨架序列的时空特征,D2=256为特征维度 | ||
MLFF-1特征融合 | 对3D-CNN特征和GCN特征进行加权融合,其中,D3=256 | ||
MLFF-2特征融合 | 对3D-CNN特征和GCN特征进行拼接,其中,D4=256 | ||
MLFF-3特征融合 | D5=256为将特征进行拼接并使用Transformer进行进一步融合 | ||
分类输出 | 8 | 输出ADHD动作类别 |
Tab. 1 Input and output dimension changes for each module
模块/步骤 | 输入维度 | 输出维度 | 说明 |
---|---|---|---|
视频输入 | T=60为帧数,H=W=224、C=3分别为帧的高度、宽度和通道数 | ||
2D骨架提取 | P=17/25/133为关键点数量 | ||
3D热图构建 | K=17/25/133,即每个关节对应一个高斯热图 | ||
3D-CNN特征提取 | 提取视频的时空特征,D1=256为特征维度 | ||
GCN特征提取 | 提取骨架序列的时空特征,D2=256为特征维度 | ||
MLFF-1特征融合 | 对3D-CNN特征和GCN特征进行加权融合,其中,D3=256 | ||
MLFF-2特征融合 | 对3D-CNN特征和GCN特征进行拼接,其中,D4=256 | ||
MLFF-3特征融合 | D5=256为将特征进行拼接并使用Transformer进行进一步融合 | ||
分类输出 | 8 | 输出ADHD动作类别 |
MLFF | Top-1准确率 | Top-5准确率 |
---|---|---|
MLFF-1(1∶1) | 0.856 0 | 0.987 9 |
MLFF-1(2∶1) | 0.859 8 | 0.986 7 |
MLFF-1(1∶2) | 0.838 8 | 0.987 8 |
MLFF-2 | 0.854 1 | 0.987 9 |
MLFF-3 | 0.860 4 | 0.987 3 |
Tab. 2 Action type recognition accuracy of 3D-GCN for ADHD patients under different fusion strategies
MLFF | Top-1准确率 | Top-5准确率 |
---|---|---|
MLFF-1(1∶1) | 0.856 0 | 0.987 9 |
MLFF-1(2∶1) | 0.859 8 | 0.986 7 |
MLFF-1(1∶2) | 0.838 8 | 0.987 8 |
MLFF-2 | 0.854 1 | 0.987 9 |
MLFF-3 | 0.860 4 | 0.987 3 |
算法 | Top-1准确率 | Top-5准确率 | 参数量/106 |
---|---|---|---|
ST-GCN[ | 0.811 5 | 0.994 8 | 3.10 |
MS-G3D[ | 0.842 8 | 0.989 2 | 14.28 |
CTR-GCN[ | 0.842 6 | 0.986 7 | 1.95 |
AGCN[ | 0.832 5 | 0.980 3 | 2.80 |
ST-GCN++[ | 0.814 7 | 0.984 8 | 1.40 |
2s-AGCN[ | 0.843 1 | 0.991 8 | 3.50 |
PoseConv3D[ | 0.847 1 | 0.991 1 | 2.00 |
3D-GCN | 0.860 4 | 0.987 3 | 2.46 |
Tab. 3 Action type recognition performance for ADHD patients of different deep learning algorithms
算法 | Top-1准确率 | Top-5准确率 | 参数量/106 |
---|---|---|---|
ST-GCN[ | 0.811 5 | 0.994 8 | 3.10 |
MS-G3D[ | 0.842 8 | 0.989 2 | 14.28 |
CTR-GCN[ | 0.842 6 | 0.986 7 | 1.95 |
AGCN[ | 0.832 5 | 0.980 3 | 2.80 |
ST-GCN++[ | 0.814 7 | 0.984 8 | 1.40 |
2s-AGCN[ | 0.843 1 | 0.991 8 | 3.50 |
PoseConv3D[ | 0.847 1 | 0.991 1 | 2.00 |
3D-GCN | 0.860 4 | 0.987 3 | 2.46 |
算法 | Top-1准确率 | Top-5准确率 | 参数量/106 |
---|---|---|---|
ST-GCN[ | 0.889 5 | 0.987 8 | 3.10 |
CTR-GCN[ | 0.896 0 | 0.989 3 | 1.95 |
MS-G3D[ | 0.913 0 | 0.993 8 | 14.28 |
ST-GCN++[ | 0.892 6 | 0.984 8 | 1.39 |
AGCN[ | 0.886 0 | 0.985 1 | 3.50 |
2s-AGCN[ | 0.919 5 | 0.992 6 | 3.50 |
PoseConv3D[ | 0.934 7 | 0.995 4 | 2.00 |
3D-GCN | 0.942 4 | 0.989 1 | 2.46 |
Tab. 4 Comparison of action recognition performance of different deep learning algorithms on NTU RGB+D 60 dataset
算法 | Top-1准确率 | Top-5准确率 | 参数量/106 |
---|---|---|---|
ST-GCN[ | 0.889 5 | 0.987 8 | 3.10 |
CTR-GCN[ | 0.896 0 | 0.989 3 | 1.95 |
MS-G3D[ | 0.913 0 | 0.993 8 | 14.28 |
ST-GCN++[ | 0.892 6 | 0.984 8 | 1.39 |
AGCN[ | 0.886 0 | 0.985 1 | 3.50 |
2s-AGCN[ | 0.919 5 | 0.992 6 | 3.50 |
PoseConv3D[ | 0.934 7 | 0.995 4 | 2.00 |
3D-GCN | 0.942 4 | 0.989 1 | 2.46 |
[1] | ZHENG Y, LI R, LI S, et al. A review on serious games for ADHD[EB/OL]. [2024-08-10]. . |
[2] | 赵健翔,吴振起,王雪峰,等. 基于机器学习的注意力缺陷多动障碍风险预测研究[J]. 中国中西医结合儿科学, 2024, 16(2): 130-136. |
ZHAO J X, WU Z Q, WANG X F, et al. Risk prediction of attention deficit hyperactivity disorder based on machine learning [J]. Chinese Pediatrics of Integrated Traditional and Western Medicine, 2024, 16(2): 130-136. | |
[3] | 卜晓鸥,王耀,杜亚雯,等. 机器学习在发展性阅读障碍儿童早期筛查中的应用[J]. 心理科学进展, 2023, 31(11): 2092-2105. |
BU X O, WANG Y, DU Y W, et al. Application of machine learning in early screening of children with dyslexia [J]. Advances in Psychological Science, 2023, 31(11): 2092-2105. | |
[4] | 罗杰,何凡,郑毅. 视频游戏应用于儿童注意缺陷多动障碍评估与治疗的系统性综述[J]. 发育医学电子杂志, 2023, 11(6): 401-410. |
LUO J, HE F, ZHENG Y. Video games for the assessment and treatment of attention deficit hyperactivity disorder in children: a systematic review [J]. Journal of Developmental Medicine (Electronic Version), 2023, 11(6): 401-410. | |
[5] | 向维. ADHD诊疗新进展综述[J]. 临床医学前沿, 2023, 5(6): 138-140. |
XIANG W. A review on new progress in ADHD diagnosis and treatment [J]. Frontiers of Clinical Medicine, 2023, 5(6): 138-140. | |
[6] | JAISWAL S, VALSTAR M F, GILLOTT A, et al. Automatic detection of ADHD and ASD from expressive behaviour in RGBD data [C]// Proceedings of the 12th IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2017: 762-769. |
[7] | DENG S, PRASSE P, REICH D R, et al. Detection of ADHD based on eye movements during natural viewing [C]// Proceedings of the 2022 European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 13718. Cham: Springer, 2023: 403-418. |
[8] | OUYANG C S, CHIU Y H, CHIANG C T, et al. Evaluating therapeutic effects of ADHD medication objectively by movement quantification with a video-based skeleton analysis [J]. International Journal of Environmental Research and Public Health, 2021, 18(17): No.9363. |
[9] | DEY S, RAO A R, SHAH M. Exploiting the brain’s network structure for automatic identification of ADHD subjects [EB/OL]. [2024-05-12]. . |
[10] | SIMS C. Highly accurate FMRI ADHD classification using time distributed multi modal 3D-CNNs [EB/OL]. [2024-02-13].. |
[11] | ULUYAGMUR-OZTURK M, ARMAN A R, YILMAZ S S, et al. ADHD and ASD classification based on emotion recognition data[C]// Proceedings of the 15th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2016: 810-813. |
[12] | AMADO-CABALLERO P, CASASECA-DE-LA-HIGUERA P, ALBEROLA-LOPEZ S, et al. Objective ADHD diagnosis using convolutional neural networks over daily-life activity records [J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(9): 2690-2700. |
[13] | ZHANG-JAMES Y, RAZAVI A S, HOOGMAN M, et al. Machine learning and MRI-based diagnostic models for ADHD: are we there yet? [J]. Journal of Attention Disorders, 2023, 27(4): 335-353. |
[14] | ALCHALABI A E, SHIRMOHAMMADI S, EDDIN A N, et al. FOCUS: detecting ADHD patients by an EEG-based serious game[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(7): 1512-1520. |
[15] | PENG J, DEBNATH M, BISWAS A K. Efficacy of novel summation-based synergetic artificial neural network in ADHD diagnosis [J]. Machine Learning with Applications, 2021, 6: No.100120. |
[16] | OCHAB J K, GERC K, FAFROWICZ M, et al. Classifying attention deficit hyperactivity disorder in children with non-linearities in actigraphy [EB/OL]. [2024-05-03].. |
[17] | CHOI M T, YEOM J, SHIN Y, et al. Robot-assisted ADHD screening in diagnostic process [J]. Journal of Intelligent and Robotic Systems, 2019, 95(2): 351-363. |
[18] | ANDRIKOPOULOS D, VASSILIOU G, FATOUROS P, et al. Machine learning-enabled detection of attention-deficit/hyperactivity disorder with multimodal physiological data: a case-control study [J]. BMC Psychiatry, 2024, 24: No.547. |
[19] | ALSHARIF N, AL-ADHAILEH M H, ALSUBARI S N, et al. ADHD diagnosis using text features and predictive machine learning and deep learning algorithms [J]. Journal of Disability Research, 2024, 3(7): No.0082. |
[20] | LIU J, SHAHROUDY A, XU D, et al. Skeleton-based action recognition using spatio-temporal LSTM network with trust gates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 3007-3021. |
[21] | 吕艾为. 基于机器学习的ADHD脑机接口辅助诊断的相关问题研究[D]. 鞍山:辽宁科技大学, 2022. |
LYU A W. Research on related problems of ADHD brain-computer interface aided diagnosis based on machine learning [D]. Anshan: University of Science and Technology Liaoning, 2022. | |
[22] | CHEN Y, ZHANG Z, YUAN C, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 13339-13348. |
[23] | LIU Z, ZHANG H, CHEN Z, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 140-149. |
[24] | DUAN H, WANG J, CHEN K, et al. PYSKL: towards good practices for skeleton action recognition [C]// Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 7351-7354. |
[25] | LI W, LIU M, LIU H, et al. GraphMLP: a graph MLP-like architecture for 3D human pose estimation [J]. Pattern Recognition, 2025, 158: No.110925. |
[26] | DUAN H, ZHAO Y, CHEN K, et al. Revisiting skeleton-based action recognition [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2959-2968. |
[27] | YAN S, XIONG Y, LIN D. Spatial temporal graph convolutional networks for skeleton-based action recognition [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 7444-7452. |
[28] | SHI L, ZHANG Y, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 12018-12027. |
[1] | Ziliang LI, Guangli ZHU, Yulei ZHANG, Jiajia LIU, Yixuan JIAO, Shunxiang ZHANG. Aspect-based sentiment analysis model integrating syntax and sentiment knowledge [J]. Journal of Computer Applications, 2025, 45(6): 1724-1731. |
[2] | Quan WANG, Qixiang LU, Pei SHI. Multi-graph diffusion attention network for traffic flow prediction [J]. Journal of Computer Applications, 2025, 45(5): 1472-1479. |
[3] | Man CHEN, Xiaojun YANG, Huimin YANG. Pedestrian trajectory prediction based on graph convolutional network and endpoint induction [J]. Journal of Computer Applications, 2025, 45(5): 1480-1487. |
[4] | Yufei LONG, Yuchen MOU, Ye LIU. Multi-source data representation learning model based on tensorized graph convolutional network and contrastive learning [J]. Journal of Computer Applications, 2025, 45(5): 1372-1378. |
[5] | Weichao DANG, Chujun SONG, Gaimei GAO, Chunxia LIU. Multi-behavior recommendation based on cascading residual graph convolutional network [J]. Journal of Computer Applications, 2025, 45(4): 1223-1231. |
[6] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
[7] | Lifang WANG, Jingshuang WU, Pengliang YIN, Lihua HU. Action recognition algorithm based on attention mechanism and energy function [J]. Journal of Computer Applications, 2025, 45(1): 234-239. |
[8] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[9] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[11] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[12] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
[13] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. |
[14] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. |
[15] | Zucheng WU, Xiaojun WU, Tianyang XU. Image-text retrieval model based on intra-modal fine-grained feature relationship extraction [J]. Journal of Computer Applications, 2024, 44(12): 3776-3783. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||