Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (9): 2755-2763.DOI: 10.11772/j.issn.1001-9081.2024081232
• Artificial intelligence • Previous Articles
Penghuan QU1, Wei WEI1,2(), Jing YAN1, Feng WANG1,2
Received:
2024-09-02
Revised:
2024-11-06
Accepted:
2024-11-15
Online:
2024-12-03
Published:
2025-09-10
Contact:
Wei WEI
About author:
QU Penghuan, born in 2000, M. S. candidate. Her research interests include deep learning.Supported by:
通讯作者:
魏巍
作者简介:
曲鹏欢(2000—),女,山西运城人,硕士研究生,主要研究方向:深度学习基金资助:
CLC Number:
Penghuan QU, Wei WEI, Jing YAN, Feng WANG. Dual imputation based incomplete multi-view metric learning[J]. Journal of Computer Applications, 2025, 45(9): 2755-2763.
曲鹏欢, 魏巍, 闫京, 王锋. 基于双补全的不完整多视图度量学习[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2755-2763.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081232
数据集 | 样本数 | 类别数 | 视图数 |
---|---|---|---|
HandWritten | 2 000 | 10 | 6 |
Caltech101-7 | 1 474 | 7 | 6 |
Leaves | 1 600 | 100 | 3 |
ORL | 400 | 40 | 3 |
CUB | 600 | 10 | 2 |
YouTubeFace10 | 38 654 | 10 | 4 |
Tab. 1 Experimental datasets
数据集 | 样本数 | 类别数 | 视图数 |
---|---|---|---|
HandWritten | 2 000 | 10 | 6 |
Caltech101-7 | 1 474 | 7 | 6 |
Leaves | 1 600 | 100 | 3 |
ORL | 400 | 40 | 3 |
CUB | 600 | 10 | 2 |
YouTubeFace10 | 38 654 | 10 | 4 |
数据集 | 方法 | D=0.1 | D=0.3 | D=0.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ACC | NMI | F1分数 | ACC | NMI | F1分数 | ACC | NMI | F1分数 | ||
HandWritten | BSV | 0.584 | 0.614 | 0.522 | 0.532 | 0.553 | 0.446 | 0.482 | 0.503 | 0.368 |
PIC | 0.779 | 0.797 | 0.720 | 0.781 | 0.792 | 0.749 | 0.800 | 0.833 | 0.783 | |
AWP | 0.708 | 0.816 | 0.719 | 0.867 | 0.880 | 0.839 | 0.860 | 0.874 | 0.834 | |
CPM | 0.905 | 0.827 | 0.905 | 0.840 | 0.754 | 0.851 | 0.753 | 0.627 | 0.770 | |
COMPLETER | 0.847 | 0.852 | 0.833 | 0.610 | 0.679 | 0.615 | 0.481 | 0.614 | 0.485 | |
DCP | 0.682 | 0.793 | 0.644 | 0.769 | 0.788 | 0.765 | 0.670 | 0.738 | 0.652 | |
DSIMVC | 0.797 | 0.749 | 0.794 | 0.789 | 0.731 | 0.785 | 0.743 | 0.687 | 0.738 | |
CPSPAN | ||||||||||
SPCC | 0.933 | 0.861 | 0.936 | 0.865 | 0.936 | 0.931 | 0.858 | 0.931 | ||
DIMVML | 0.977 | 0.955 | 0.977 | 0.958 | 0.924 | 0.958 | 0.945 | 0.901 | 0.945 | |
Caltech101-7 | BSV | 0.228 | 0.036 | 0.246 | 0.284 | 0.250 | 0.297 | 0.265 | 0.210 | 0.281 |
PIC | 0.656 | 0.592 | 0.649 | 0.653 | 0.619 | 0.654 | 0.646 | 0.605 | 0.641 | |
AWP | 0.779 | 0.735 | 0.724 | 0.724 | 0.677 | 0.677 | 0.661 | 0.667 | 0.636 | |
CPM | 0.832 | 0.734 | 0.811 | 0.754 | 0.652 | 0.721 | 0.696 | 0.575 | 0.693 | |
COMPLETER | 0.528 | 0.573 | 0.499 | 0.500 | 0.533 | 0.485 | 0.534 | 0.557 | 0.535 | |
DCP | 0.578 | 0.584 | 0.552 | 0.454 | 0.518 | 0.424 | 0.487 | 0.548 | 0.443 | |
DSIMVC | 0.649 | 0.565 | 0.642 | 0.629 | 0.537 | 0.622 | 0.554 | 0.471 | 0.549 | |
CPSPAN | ||||||||||
SPCC | — | — | — | — | — | — | — | — | — | |
DIMVML | 0.976 | 0.945 | 0.975 | 0.966 | 0.927 | 0.966 | 0.963 | 0.910 | 0.965 | |
Leaves | BSV | — | — | — | — | — | — | — | — | — |
PIC | — | — | — | — | — | — | — | — | — | |
AWP | — | — | — | — | — | — | — | — | — | |
CPM | 0.755 | 0.887 | 0.746 | 0.638 | 0.837 | 0.619 | 0.565 | 0.816 | 0.532 | |
COMPLETER | 0.331 | 0.713 | 0.296 | 0.287 | 0.661 | 0.257 | 0.250 | 0.589 | 0.228 | |
DCP | 0.258 | 0.668 | 0.198 | 0.188 | 0.564 | 0.154 | 0.319 | 0.607 | 0.298 | |
DSIMVC | 0.302 | 0.647 | 0.242 | 0.283 | 0.613 | 0.181 | 0.260 | 0.583 | 0.166 | |
CPSPAN | 0.820 | |||||||||
SPCC | 0.907 | 0.785 | 0.878 | 0.776 | 0.706 | 0.825 | 0.704 | |||
DIMVML | 0.956 | 0.988 | 0.960 | 0.922 | 0.975 | 0.927 | 0.913 | 0.972 | 0.918 | |
YouTubeFace10 | BSV | — | — | — | — | — | — | — | — | — |
PIC | — | — | — | — | — | — | — | — | — | |
AWP | — | — | — | — | — | — | — | — | — | |
CPM | 0.772 | 0.753 | 0.740 | 0.768 | 0.715 | 0.698 | 0.702 | 0.673 | ||
COMPLETER | 0.620 | 0.642 | 0.605 | 0.653 | 0.677 | 0.628 | 0.551 | 0.563 | 0.534 | |
DCP | 0.746 | 0.782 | 0.725 | 0.659 | 0.644 | 0.617 | 0.604 | 0.577 | 0.586 | |
DSIMVC | 0.730 | 0.762 | 0.714 | 0.716 | 0.738 | 0.689 | 0.683 | 0.691 | 0.657 | |
CPSPAN | 0.839 | 0.767 | ||||||||
SPCC | — | — | — | — | — | — | — | — | — | |
DIMVML | 0.844 | 0.720 | 0.850 | 0.826 | 0.867 | 0.899 | 0.824 | 0.865 |
Tab. 2 Comparison of ACC, NMI, and F1 score of clustering results of different methods
数据集 | 方法 | D=0.1 | D=0.3 | D=0.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ACC | NMI | F1分数 | ACC | NMI | F1分数 | ACC | NMI | F1分数 | ||
HandWritten | BSV | 0.584 | 0.614 | 0.522 | 0.532 | 0.553 | 0.446 | 0.482 | 0.503 | 0.368 |
PIC | 0.779 | 0.797 | 0.720 | 0.781 | 0.792 | 0.749 | 0.800 | 0.833 | 0.783 | |
AWP | 0.708 | 0.816 | 0.719 | 0.867 | 0.880 | 0.839 | 0.860 | 0.874 | 0.834 | |
CPM | 0.905 | 0.827 | 0.905 | 0.840 | 0.754 | 0.851 | 0.753 | 0.627 | 0.770 | |
COMPLETER | 0.847 | 0.852 | 0.833 | 0.610 | 0.679 | 0.615 | 0.481 | 0.614 | 0.485 | |
DCP | 0.682 | 0.793 | 0.644 | 0.769 | 0.788 | 0.765 | 0.670 | 0.738 | 0.652 | |
DSIMVC | 0.797 | 0.749 | 0.794 | 0.789 | 0.731 | 0.785 | 0.743 | 0.687 | 0.738 | |
CPSPAN | ||||||||||
SPCC | 0.933 | 0.861 | 0.936 | 0.865 | 0.936 | 0.931 | 0.858 | 0.931 | ||
DIMVML | 0.977 | 0.955 | 0.977 | 0.958 | 0.924 | 0.958 | 0.945 | 0.901 | 0.945 | |
Caltech101-7 | BSV | 0.228 | 0.036 | 0.246 | 0.284 | 0.250 | 0.297 | 0.265 | 0.210 | 0.281 |
PIC | 0.656 | 0.592 | 0.649 | 0.653 | 0.619 | 0.654 | 0.646 | 0.605 | 0.641 | |
AWP | 0.779 | 0.735 | 0.724 | 0.724 | 0.677 | 0.677 | 0.661 | 0.667 | 0.636 | |
CPM | 0.832 | 0.734 | 0.811 | 0.754 | 0.652 | 0.721 | 0.696 | 0.575 | 0.693 | |
COMPLETER | 0.528 | 0.573 | 0.499 | 0.500 | 0.533 | 0.485 | 0.534 | 0.557 | 0.535 | |
DCP | 0.578 | 0.584 | 0.552 | 0.454 | 0.518 | 0.424 | 0.487 | 0.548 | 0.443 | |
DSIMVC | 0.649 | 0.565 | 0.642 | 0.629 | 0.537 | 0.622 | 0.554 | 0.471 | 0.549 | |
CPSPAN | ||||||||||
SPCC | — | — | — | — | — | — | — | — | — | |
DIMVML | 0.976 | 0.945 | 0.975 | 0.966 | 0.927 | 0.966 | 0.963 | 0.910 | 0.965 | |
Leaves | BSV | — | — | — | — | — | — | — | — | — |
PIC | — | — | — | — | — | — | — | — | — | |
AWP | — | — | — | — | — | — | — | — | — | |
CPM | 0.755 | 0.887 | 0.746 | 0.638 | 0.837 | 0.619 | 0.565 | 0.816 | 0.532 | |
COMPLETER | 0.331 | 0.713 | 0.296 | 0.287 | 0.661 | 0.257 | 0.250 | 0.589 | 0.228 | |
DCP | 0.258 | 0.668 | 0.198 | 0.188 | 0.564 | 0.154 | 0.319 | 0.607 | 0.298 | |
DSIMVC | 0.302 | 0.647 | 0.242 | 0.283 | 0.613 | 0.181 | 0.260 | 0.583 | 0.166 | |
CPSPAN | 0.820 | |||||||||
SPCC | 0.907 | 0.785 | 0.878 | 0.776 | 0.706 | 0.825 | 0.704 | |||
DIMVML | 0.956 | 0.988 | 0.960 | 0.922 | 0.975 | 0.927 | 0.913 | 0.972 | 0.918 | |
YouTubeFace10 | BSV | — | — | — | — | — | — | — | — | — |
PIC | — | — | — | — | — | — | — | — | — | |
AWP | — | — | — | — | — | — | — | — | — | |
CPM | 0.772 | 0.753 | 0.740 | 0.768 | 0.715 | 0.698 | 0.702 | 0.673 | ||
COMPLETER | 0.620 | 0.642 | 0.605 | 0.653 | 0.677 | 0.628 | 0.551 | 0.563 | 0.534 | |
DCP | 0.746 | 0.782 | 0.725 | 0.659 | 0.644 | 0.617 | 0.604 | 0.577 | 0.586 | |
DSIMVC | 0.730 | 0.762 | 0.714 | 0.716 | 0.738 | 0.689 | 0.683 | 0.691 | 0.657 | |
CPSPAN | 0.839 | 0.767 | ||||||||
SPCC | — | — | — | — | — | — | — | — | — | |
DIMVML | 0.844 | 0.720 | 0.850 | 0.826 | 0.867 | 0.899 | 0.824 | 0.865 |
数据集 | 方法 | D=0.0 | D=0.1 | D=0.2 | D=0.3 | D=0.4 | D=0.5 |
---|---|---|---|---|---|---|---|
CUB | DMF | 0.535 | 0.559 | 0.450 | 0.382 | 0.353 | 0.304 |
MDcR | 0.852 | 0.775 | 0.768 | 0.702 | 0.688 | 0.692 | |
ITML | 0.840 | 0.826 | 0.779 | 0.726 | 0.704 | 0.698 | |
LMNN | 0.863 | 0.815 | 0.778 | 0.728 | 0.703 | 0.481 | |
CPM | 0.895 | 0.884 | 0.771 | 0.763 | |||
COMPLETER | 0.842 | 0.813 | 0.766 | 0.750 | |||
LHGN | 0.910 | 0.865 | |||||
DIMVML | 0.983 | 0.967 | 0.958 | 0.958 | 0.95 | 0.933 | |
ORL | DMF | 0.959 | 0.906 | 0.778 | 0.672 | 0.568 | 0.445 |
MDcR | 0.965 | 0.847 | 0.766 | 0.719 | 0.640 | 0.609 | |
ITML | 0.971 | 0.841 | 0.840 | 0.722 | 0.610 | 0.568 | |
LMNN | 0.974 | 0.857 | 0.834 | 0.752 | 0.663 | 0.682 | |
CPM | 0.974 | 0.982 | 0.962 | 0.931 | 0.889 | ||
COMPLETER | 0.975 | 0.962 | 0.952 | 0.953 | 0.928 | ||
LHGN | |||||||
DIMVML | 0.988 | 0.975 | 0.975 | 0.975 | 0.963 | 0.938 | |
HandWritten | DMF | 0.723 | 0.634 | 0.590 | 0.483 | 0.448 | 0.373 |
MDcR | 0.977 | 0.953 | 0.926 | 0.913 | 0.871 | ||
ITML | 0.968 | 0.908 | 0.855 | 0.814 | 0.748 | 0.764 | |
LMNN | 0.942 | 0.913 | 0.879 | 0.832 | 0.815 | ||
CPM | 0.950 | 0.948 | 0.937 | 0.936 | 0.927 | 0.910 | |
COMPLETER | 0.969 | 0.957 | 0.948 | 0.933 | 0.928 | ||
LHGN | 0.960 | ||||||
DIMVML | 0.992 | 0.990 | 0.970 | 0.965 | 0.955 | 0.945 |
Tab. 3 Comparison of ACC of classification results of different methods
数据集 | 方法 | D=0.0 | D=0.1 | D=0.2 | D=0.3 | D=0.4 | D=0.5 |
---|---|---|---|---|---|---|---|
CUB | DMF | 0.535 | 0.559 | 0.450 | 0.382 | 0.353 | 0.304 |
MDcR | 0.852 | 0.775 | 0.768 | 0.702 | 0.688 | 0.692 | |
ITML | 0.840 | 0.826 | 0.779 | 0.726 | 0.704 | 0.698 | |
LMNN | 0.863 | 0.815 | 0.778 | 0.728 | 0.703 | 0.481 | |
CPM | 0.895 | 0.884 | 0.771 | 0.763 | |||
COMPLETER | 0.842 | 0.813 | 0.766 | 0.750 | |||
LHGN | 0.910 | 0.865 | |||||
DIMVML | 0.983 | 0.967 | 0.958 | 0.958 | 0.95 | 0.933 | |
ORL | DMF | 0.959 | 0.906 | 0.778 | 0.672 | 0.568 | 0.445 |
MDcR | 0.965 | 0.847 | 0.766 | 0.719 | 0.640 | 0.609 | |
ITML | 0.971 | 0.841 | 0.840 | 0.722 | 0.610 | 0.568 | |
LMNN | 0.974 | 0.857 | 0.834 | 0.752 | 0.663 | 0.682 | |
CPM | 0.974 | 0.982 | 0.962 | 0.931 | 0.889 | ||
COMPLETER | 0.975 | 0.962 | 0.952 | 0.953 | 0.928 | ||
LHGN | |||||||
DIMVML | 0.988 | 0.975 | 0.975 | 0.975 | 0.963 | 0.938 | |
HandWritten | DMF | 0.723 | 0.634 | 0.590 | 0.483 | 0.448 | 0.373 |
MDcR | 0.977 | 0.953 | 0.926 | 0.913 | 0.871 | ||
ITML | 0.968 | 0.908 | 0.855 | 0.814 | 0.748 | 0.764 | |
LMNN | 0.942 | 0.913 | 0.879 | 0.832 | 0.815 | ||
CPM | 0.950 | 0.948 | 0.937 | 0.936 | 0.927 | 0.910 | |
COMPLETER | 0.969 | 0.957 | 0.948 | 0.933 | 0.928 | ||
LHGN | 0.960 | ||||||
DIMVML | 0.992 | 0.990 | 0.970 | 0.965 | 0.955 | 0.945 |
损失 | Leaves | CUB | |||||||
---|---|---|---|---|---|---|---|---|---|
D=0.1 | D=0.3 | D=0.5 | D=0.1 | D=0.3 | D=0.5 | ||||
√ | 0.925 | 0.806 | 0.800 | 0.900 | 0.708 | 0.508 | |||
√ | √ | √ | 0.922 | 0.819 | 0.803 | 0.950 | 0.833 | 0.692 | |
√ | √ | √ | 0.934 | 0.819 | 0.769 | 0.950 | 0.925 | 0.817 | |
√ | √ | √ | 0.919 | 0.825 | 0.775 | 0.958 | 0.933 | 0.908 | |
√ | √ | √ | √ | 0.956 | 0.922 | 0.913 | 0.983 | 0.958 | 0.933 |
Tab. 4 Ablation study results about loss functions (ACC)
损失 | Leaves | CUB | |||||||
---|---|---|---|---|---|---|---|---|---|
D=0.1 | D=0.3 | D=0.5 | D=0.1 | D=0.3 | D=0.5 | ||||
√ | 0.925 | 0.806 | 0.800 | 0.900 | 0.708 | 0.508 | |||
√ | √ | √ | 0.922 | 0.819 | 0.803 | 0.950 | 0.833 | 0.692 | |
√ | √ | √ | 0.934 | 0.819 | 0.769 | 0.950 | 0.925 | 0.817 | |
√ | √ | √ | 0.919 | 0.825 | 0.775 | 0.958 | 0.933 | 0.908 | |
√ | √ | √ | √ | 0.956 | 0.922 | 0.913 | 0.983 | 0.958 | 0.933 |
补全方式 | Leaves | CUB | |||||
---|---|---|---|---|---|---|---|
分布信息 | 差异信息 | D=0.1 | D=0.3 | D=0.5 | D=0.1 | D=0.3 | D=0.5 |
√ | 0.903 | 0.828 | 0.766 | 0.892 | 0.867 | 0.858 | |
√ | 0.909 | 0.809 | 0.775 | 0.908 | 0.875 | 0.816 | |
√ | √ | 0.956 | 0.922 | 0.913 | 0.983 | 0.958 | 0.933 |
Tab. 5 Ablation study results about completion methods (ACC)
补全方式 | Leaves | CUB | |||||
---|---|---|---|---|---|---|---|
分布信息 | 差异信息 | D=0.1 | D=0.3 | D=0.5 | D=0.1 | D=0.3 | D=0.5 |
√ | 0.903 | 0.828 | 0.766 | 0.892 | 0.867 | 0.858 | |
√ | 0.909 | 0.809 | 0.775 | 0.908 | 0.875 | 0.816 | |
√ | √ | 0.956 | 0.922 | 0.913 | 0.983 | 0.958 | 0.933 |
[1] | YANG Y, WANG H. Multi-view clustering: a survey [J]. Big Data Mining and Analytics, 2018, 1(2): 83-107. |
[2] | LIU X, ZHU X, LI M, et al. Multiple kernel k-means with incomplete kernels [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(5): 1191-1204. |
[3] | LIN Y, GOU Y, LIU X, et al. Dual contrastive prediction for incomplete multi-view representation learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4447-4461. |
[4] | WANG H, FENG L, MENG X, et al. Multi-view metric learning based on KL-divergence for similarity measurement [J]. Neurocomputing, 2017, 238: 269-276. |
[5] | WANG X, LIU M. Multi-view deep metric learning for volumetric image recognition [C]// Proceedings of the 2018 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2018: 1-6. |
[6] | ZHANG C, LIU Y Q, LIU Y, et al. FISH-MML: fisher-HSIC multi-view metric learning [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2018: 3054-3060. |
[7] | ZHU P, YAO X, WANG Y, et al. Latent heterogeneous graph network for incomplete multi-view learning [J]. IEEE Transactions on Multimedia, 2023, 25: 3033-3045. |
[8] | LIN Y, GOU Y, LIU Z, et al. COMPLETER: incomplete multi-view clustering via contrastive prediction [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11169-11178. |
[9] | TANG H, LIU Y. Deep safe incomplete multi-view clustering: theorem and algorithm [C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 21090-21110. |
[10] | JIN J, WANG S, DONG Z, et al. Deep incomplete multi-view clustering with cross-view partial sample and prototype alignment[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 11600-11609. |
[11] | 董瑶,付怡雪,董永峰,等. 不完整多视图聚类综述 [J]. 计算机应用, 2024, 44(6):1673-1682. |
DONG Y, FU Y X, DONG Y F, et al. Survey of incomplete multi-view clustering [J]. Journal of Computer Applications, 2024, 44(6): 1673-1682. | |
[12] | LI S Y, JIANG Y, ZHOU Z H. Partial multi-view clustering[C]// Proceedings of the 28th Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1968-1974. |
[13] | SHAO W, HE L, LU C T, et al. Online multi-view clustering with incomplete views [C]// Proceedings of the 2016 IEEE International Conference on Big Data. Piscataway: IEEE, 2016: 1012-1017. |
[14] | HU M, CHEN S. Doubly aligned incomplete multi-view clustering[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2018: 2262-2268. |
[15] | LIU X, ZHOU S, WANG Y, et al. Optimal neighborhood kernel clustering with multiple kernels [C]// Proceedings of the 31st Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 2266-2272. |
[16] | 夏冬雪,杨燕,王浩,等. 基于邻域多核学习的后融合多视图聚类算法[J]. 计算机研究与发展, 2020, 57(8):1627-1638. |
XIA D X, YANG Y, WANG H, et al. Late fusion multi-view clustering based on local multi-kernel learning [J]. Journal of Computer Research and Development, 2020, 57(8): 1627-1638. | |
[17] | WANG H, ZONG L, LIU B, et al. Spectral perturbation meets incomplete multi-view data [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2019: 3677-3683. |
[18] | NIE F, TIAN L, LI X. Multiview clustering via adaptively weighted Procrustes [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 2022-2030. |
[19] | 诸葛文章,范瑞东,罗廷金,等. 基于独立自表达学习的不完全多视图聚类[J]. 中国科学:信息科学, 2022, 52(7):1186-1203. |
ZHUGE W Z, FAN R D, LUO T J, et al. Incomplete multi-view clustering via independent self-representation [J]. SCIENTIA SINICA Informationis, 2022, 52(7): 1186-1203. | |
[20] | WEN J, XU Y, LIU H. Incomplete multiview spectral clustering with adaptive graph learning [J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1418-1429. |
[21] | ZHANG P, WANG S, HU J, et al. Adaptive weighted graph fusion incomplete multi-view subspace clustering [J]. Sensors, 2020, 20(20): No.5755. |
[22] | ZHAO H, LIU H, FU Y. Incomplete multi-modal visual data grouping [C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2392-2398. |
[23] | DONG Z, JIN J, XIAO Y, et al. Subgraph propagation and contrastive calibration for incomplete multiview data clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(2): 3218-3230. |
[24] | CHAO G, JIANG Y, CHU D. Incomplete contrastive multi-view clustering with high-confidence guiding [C]// Proceedings of the 38th Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 11221-11229. |
[25] | XIE M, HAN Z, ZHANG C, et al. Exploring and exploiting uncertainty for incomplete multi-view classification [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 19873-19882. |
[26] | WANG Y, CHANG D, FU Z, et al. Incomplete multiview clustering via cross-view relation transfer [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(1): 367-378. |
[27] | YANG M, LI Y, HU P, et al. Robust multi-view clustering with incomplete information [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 1055-1069. |
[28] | ZHANG C, HAN Z, CUI Y, et al. CPM-Nets: cross partial multi-view networks [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 559-569. |
[29] | 李顺勇,李师毅,胥瑞,等. 基于自注意力融合的不完整多视图聚类算法[J]. 计算机应用, 2024, 44(9): 2696-2703. |
LI S Y, LI S Y, XU R, et al. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. | |
[30] | 杨成昊,胡节,王红军,等. 基于注意力机制的不完备多视图聚类算法[J]. 计算机应用, 2024, 44(12): 3784-3789. |
YANG C H, HU J, WANG H J, et al. Incomplete multi-view clustering algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(12): 3784-3789. | |
[31] | 刘晓琳,白亮,赵兴旺,等. 基于多阶近邻融合的不完整多视图聚类算法[J]. 软件学报, 2022, 33(4):1354-1372. |
LIU X L, BAI L, ZHAO X W, et al. Incomplete multi-view clustering algorithm based on multi-order neighborhood fusion [J]. Journal of Software, 2022, 33(4):1354-1372. | |
[32] | FU Z, MAO Z, HU B, et al. Intra-class adaptive augmentation with neighbor correction for deep metric learning [J]. IEEE Transactions on Multimedia, 2023, 25: 7758-7771. |
[33] | QIAN Q, SHANG L, SUN B, et al. Softtriple loss: deep metric learning without triplet sampling [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6449-6457. |
[34] | KIM S, KIM D, CHO M, et al. Proxy anchor loss for deep metric learning [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3235-3244. |
[35] | YAN W, ZHANG Y, LV C, et al. GCFAgg: global and cross-view feature aggregation for multi-view clustering [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 19863-19872. |
[36] | NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm [C]// Proceedings of the 15th International Conference on Neural Information Processing Systems: Natural and Synthetic. Cambridge: MIT Press, 2001: 849-856. |
[37] | ZHANG C, FU H, HU Q, et al. Flexible multi-view dimensionality co-reduction [J]. IEEE Transactions on Image Processing, 2017, 26(2): 648-659. |
[38] | ZHAO H, DING Z, FU Y. Multi-view clustering via deep matrix factorization [C]// Proceedings of the 31st Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 2921-2927. |
[39] | DAVIS J V, KULIS B, JAIN P, et al. Information-theoretic metric learning [C]// Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007: 209-216. |
[40] | WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification [J]. Journal of Machine Learning Research, 2009, 10: 207-244. |
[1] | Ao SHEN, Ruizhang HUANG, Jingjing XUE, Yanping CHEN, Yongbin QIN. Deep variational text clustering model based on distribution augmentation [J]. Journal of Computer Applications, 2025, 45(8): 2457-2463. |
[2] | Yi WANG, Yinglong MA. Multi-task social item recommendation method based on dynamic adaptive generation of item graph [J]. Journal of Computer Applications, 2025, 45(8): 2592-2599. |
[3] | Binhong XIE, Yingkun LA, Yingjun ZHANG, Rui ZHANG. Semi-supervised object detection framework guided by self-paced learning [J]. Journal of Computer Applications, 2025, 45(8): 2546-2554. |
[4] | Jin XIE, Surong CHU, Yan QIANG, Juanjuan ZHAO, Hua ZHANG, Yong GAO. Dual-branch distribution consistency contrastive learning model for hard negative sample identification in chest X-rays [J]. Journal of Computer Applications, 2025, 45(7): 2369-2377. |
[5] | Haijie WANG, Guangxin ZHANG, Hai SHI, Shu CHEN. Document-level relation extraction based on entity representation enhancement [J]. Journal of Computer Applications, 2025, 45(6): 1809-1816. |
[6] | Yufei LONG, Yuchen MOU, Ye LIU. Multi-source data representation learning model based on tensorized graph convolutional network and contrastive learning [J]. Journal of Computer Applications, 2025, 45(5): 1372-1378. |
[7] | Guangju YANG, Tianjian LUO, Kaijun WANG, Siqi YANG. Multi-branch multi-view based contextual contrastive representation learning method for time series [J]. Journal of Computer Applications, 2025, 45(4): 1042-1052. |
[8] | Jie XU, Yong ZHONG, Yang WANG, Changfu ZHANG, Guanci YANG. Facial attribute estimation and expression recognition based on contextual channel attention mechanism [J]. Journal of Computer Applications, 2025, 45(1): 253-260. |
[9] | Wenbo ZHAO, Zitong MA, Zhe YANG. Link prediction model based on directed hypergraph adaptive convolution [J]. Journal of Computer Applications, 2025, 45(1): 15-23. |
[10] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
[11] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[12] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
[13] | Wentao JIANG, Wanxuan LI, Shengchong ZHANG. Correlation filtering based target tracking with nonlinear temporal consistency [J]. Journal of Computer Applications, 2024, 44(8): 2558-2570. |
[14] | Guiyong LI, Bin HE, Lei FANG. Key generation algorithm based on cyclic grouping of difference thresholds [J]. Journal of Computer Applications, 2024, 44(7): 2110-2115. |
[15] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||