[1]邓乃扬,田英杰. 数据挖掘中的新方法——支持向量机 [M]. 北京:科学出版社,2004.[2]邓乃扬,田英杰. 支持向量机: 理论、算法与拓展 [M]. 北京:科学出版社, 2009.[3]吕佳. 基于动态隧道系统的K-means聚类算法研究 [J]. 重庆师范大学学报:自然科学版,2009,26(1):73-77.[4]CHAPELLE O, SCHOLKOPF B, ZIEN A. Semi-supervised learning [M]. Cambridge: MIT Press, 2006.[5]ZHU X J. Semi-supervised learning literature survey [EB/OL]. [2010-05-10]. http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf.[6]吕佳.基于改进分类模型的文本分类系统实现 [J]. 重庆师范大学学报:自然科学版,2009,26(2):68-73.[7]ZHU X J, GHAHARMANI Z, LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions [C]// FAWCETT T, MISHRA N. Proceedings of 20th International Conference on Machine Learning, Menlo Park: AAAI Press, 2003: 912-919.[8]BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples [J]. Journal of Machine Learning Research, 2006, 7(11): 2399-2434.[9]ZHOU D Y, BOUSQUET O, LAL T N, et al. Learning with local and global consistency [C]// THRUM S, SAUL L, SCHLKOPF B. Proceedings of the 18th Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2003: 321-328.[10]WU M R, SCHOLKOPF B. Transductive classification via local learning regularization [C]// MEILA M, SHEN X. Proceedings of the 11th International Conference on Artificial Intelligence and Statistics. Cambridge: MIT Press, 2007: 624-631.[11]XIANG S M, NIE F P, ZHANG C S. Semi-supervised classification via local spline regression [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 32(11): 2039-2053.[12]WANG F. A general learning framework using local and global regularization [J]. Pattern Recognition, 2010, 43(9): 3120-3129.[13]VAPNIK V. The nature of statistical learning theory [M]. Berlin: Springer-Verlag, 1995.[14]BOTTOU L, VAPNIK V. Local learning algorithms [J]. Neural Computation, 1992, 4(6): 888-900.[15]VAPNIK V, BOTTOU L. Local algorithms for pattern recognition and dependencies estimation [J]. Neural Computation, 1993, 5(6): 893-909. |