[1] National Internet Emergency Center. 2013 China Internet network security situation comprehensive[EB/OL]. [2014-06-03]. http://www.cert.org.cn/publish/main/46/2014/20140603151551324 380013/20140603151551324380013.html.(国家互联网应急中心. 2013年中国互联网网络安全态势综[EB/OL].[2014-06-03]. http://www.cert.org.cn/publish/main/46/2014/201406031 51551324380013/20140603151551324380013.html.) [2] LI Y. Malicious code detection and behavior analysis[D]. Xi'an:Xidian University,2010.(李阳.恶意代码检测及其行为分析[D].西安:西安电子科技大学,2010.) [3] SANTOS I, BREZO F, UGARTE-PEDRERO X, et al. Opcode sequences as representation of executables for data-mining-based unknown malware detection[J]. Information Sciences,2013,231:64-82. [4] WANG R, FENG D, YANG Y, et al. Semantics-based malware behavior signature extraction and detection method[J]. Journal of Software,2012,23(2):378-393.(王蕊,冯登国,杨轶,等.基于语义的恶意代码行为特征提取及检测方法[J].软件学报,2012,23(2):378-393.) [5] NAKAZATO J, SONG J, ETO M. A novel malware clustering method using frequency of function call traces in parallel threads[J]. IEICE Transactions on Information and Systems,2011,E94-D(11):2150-2158. [6] QI S. Research into malware classification and detection based on instruction analysis[D]. Hangzhou: Hangzhou Dianzi University,2012.(戚树慧. 基于指令分析的恶意代码分类与检测研究[D]. 杭州:杭州电子科技大学,2012.) [7] ZHANG C. A research on engine of behavior-based detection of malicious code technology[D]. Beijing: Beijing University of Posts and Telecommunications,2012.(张程. 基于行为检测的恶意代码查杀引擎技术研究[D]. 北京:北京邮电大学,2012.) [8] WANG S, ZHOU J, PENG B. Unknown virus detection based on API sequence and support vector machine[J]. Journal of Computer Applications,2007,27(8):1942-1943.(王硕,周激流,彭博. 基于API序列分析和支持向量机的未知病毒检测[J].计算机应用,2007,27(8):1942-1943.) [9] ZHANG B, YIN J, HAO J. Using RS and SVM to detect new malicious executable codes[C]// Proceedings of the First International Conference on Rough Sets and Knowledge Technology, LNCS 4062. Berlin: Springer-Verlag, 2006:574-579. [10] ZHANG X, GU C, LIN J. Windows-hosted intrusion detection system based on support vector machines[J]. Journal of East China University of Science and Technology: Natural Science,2006,32(3):341-345.(张雪芹,顾春华,林家骏. 基于支持向量机的Windows主机入侵检测系统[J]. 华东理工大学学报:自然科学版,2006,32(3):341-345) [11] LI H. Statistical learning methods[M]. Beijing:Tsinghua University Press,2012.(李航. 统计学习方法[M]. 北京:清华大学出版社, 2012.) [12] DAI H. Application of support vector machine in intrusion detection[J]. Computer Engineering,2012,38(4):143-145.(代红. 支持向量机在入侵检测中的应用[J].计算机工程, 2012,38(4):143-145.) [13] XU C, LIU X, WU J, et al. Software behavior evaluation system based on BP neural network[J]. Computer Engineering,2014,40(9):149-154.(徐婵,刘新,吴建,等. 基于BP神经网络的软件行为评估系统[J]. 计算机工程,2014,40(9):149-154.) [14] LIN C. LIBSVM[EB/CP].[2014-05-01]. http://www.csie.ntu.edu.tw/~cjlin/libsvm/Index.html.) [15] XIE L, ZHANG T, ZHAO B. Dual kernel support vector machine optimized by particle swarm optimization algorithm and its application[J]. Journal of Vibration, Measurement and Diagnosis,2011,34(3):565-569.(聂立新,张天侠,赵波. 粒子群算法优化双核支持向量机及应用[J]. 振动测试与诊断,2011,34(3):565-569.) [16] DONG C, RAO X, YANG S, et al. Method for selecting the parameters of support vector machines[J]. Systems Engineering and Electronics,2004,26(8):1117-1120.(董春曦,饶鲜,杨绍全,等. 支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120.) [17] YANG L, HE G. Support vector machine fault diagnosis method based on improved particle swarm optimization[J]. Computer Engineering,2013,39(3):187-190,196.(杨柳松,何光宇. 基于改进粒子群优化的SVM故障诊断方法[J]. 计算机工程,2013,39(3):187-190,196.) [18] LIN C. A practical guide to support vector classification [EB/OL].[2014-05-01].http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf. [19] CHEN G, WANG X, ZHUANG Z, et al. Genetic algorithm and its application[M]. Beijing: Posts and Telecom Press,2001.(陈国良,王煦法,庄镇泉,等. 遗传算法及其应用[M].北京:人民邮电出版社,2001.) |