Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3608-3613.DOI: 10.11772/j.issn.1001-9081.2021060886
Special Issue: 第十八届中国机器学习会议(CCML 2021)
• The 18th China Conference on Machine Learning • Previous Articles Next Articles
Hongliang CAO1,2, Ying ZHANG1,2(), Bin WU1, Fanyu LI1, Xubo NA1
Received:
2021-05-12
Revised:
2021-06-14
Accepted:
2021-06-23
Online:
2021-12-28
Published:
2021-12-10
Contact:
Ying ZHANG
About author:
CAO Hongliang, born in 2000. His research interests include machine learning, artificial intelligence.Supported by:
曹鸿亮1,2, 张莹1,2(), 武斌1, 李繁菀1, 那绪博1
通讯作者:
张莹
作者简介:
曹鸿亮(2000—),男,江苏淮安人,主要研究方向:机器学习、人工智能基金资助:
CLC Number:
Hongliang CAO, Ying ZHANG, Bin WU, Fanyu LI, Xubo NA. Prediction method of liver transplantation complications based on transfer component analysis and support vector machine[J]. Journal of Computer Applications, 2021, 41(12): 3608-3613.
曹鸿亮, 张莹, 武斌, 李繁菀, 那绪博. 基于迁移成分分析和支持向量机的肝移植并发症预测方法[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3608-3613.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021060886
符号 | 说明 | 符号 | 说明 |
---|---|---|---|
源领域原始数据 | |||
目标领域原始数据 | 共享字典编码 | ||
MMD矩阵 |
Tab. 1 Formula symbol description
符号 | 说明 | 符号 | 说明 |
---|---|---|---|
源领域原始数据 | |||
目标领域原始数据 | 共享字典编码 | ||
MMD矩阵 |
数据集 | 样本数 | 正例数 |
---|---|---|
术后并发症I | 425 | 301 |
术后并发症Ⅱ | 425 | 99 |
术后并发症Ⅲa | 425 | 42 |
术后并发症Ⅲb | 425 | 33 |
术后并发症Ⅳ | 425 | 283 |
V级(死亡) | 425 | 40 |
Tab. 2 Basic situation of experimental dataset
数据集 | 样本数 | 正例数 |
---|---|---|
术后并发症I | 425 | 301 |
术后并发症Ⅱ | 425 | 99 |
术后并发症Ⅲa | 425 | 42 |
术后并发症Ⅲb | 425 | 33 |
术后并发症Ⅳ | 425 | 283 |
V级(死亡) | 425 | 40 |
术前特征 | 特征数 | 术中特征 | 特征数 | 术后特征 | 特征数 |
---|---|---|---|---|---|
血常规 | 10 | 术中情况 | 46 | 输血情况 | 34 |
生化 | 10 | 血气 | 110 | 出院前后转归 | 4 |
血气 | 11 | 血常规 | 90 | ||
凝血 | 7 | 生化 | 90 | ||
血气 | 44 | ||||
凝血 | 63 |
Tab. 3 Liver transplantation features in experimental dataset
术前特征 | 特征数 | 术中特征 | 特征数 | 术后特征 | 特征数 |
---|---|---|---|---|---|
血常规 | 10 | 术中情况 | 46 | 输血情况 | 34 |
生化 | 10 | 血气 | 110 | 出院前后转归 | 4 |
血气 | 11 | 血常规 | 90 | ||
凝血 | 7 | 生化 | 90 | ||
血气 | 44 | ||||
凝血 | 63 |
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后并发症Ⅲa | 术后并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
PCA_SVM | 0.83 | 0.00 | 0.00 | 0.00 | 0.80 |
TCA_SVM | 0.98 | 0.94 | 0.85 | 0.88 | 0.99 |
HDA_SVM | 0.83 | 0.00 | 0.00 | 0.00 | 0.80 |
Tab. 4 F1 scores of SVM on PCA, TCA, HDA
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后并发症Ⅲa | 术后并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
PCA_SVM | 0.83 | 0.00 | 0.00 | 0.00 | 0.80 |
TCA_SVM | 0.98 | 0.94 | 0.85 | 0.88 | 0.99 |
HDA_SVM | 0.83 | 0.00 | 0.00 | 0.00 | 0.80 |
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后 并发症Ⅲa | 术后 并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
PCA_XGBoost | 0.77 | 0.12 | 0.20 | 0.40 | 0.76 |
TCA_XGBoost | 0.87 | 0.11 | 0.00 | 0.14 | 0.79 |
HDA_XGBoost | 0.76 | 0.16 | 0.00 | 0.04 | 0.76 |
Tab. 5 F1 scores of XGBoost on PCA, TCA, HDA
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后 并发症Ⅲa | 术后 并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
PCA_XGBoost | 0.77 | 0.12 | 0.20 | 0.40 | 0.76 |
TCA_XGBoost | 0.87 | 0.11 | 0.00 | 0.14 | 0.79 |
HDA_XGBoost | 0.76 | 0.16 | 0.00 | 0.04 | 0.76 |
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后 并发症Ⅲa | 术后 并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
PCA_KNN | 0.79 | 0.00 | 0.00 | 0.00 | 0.67 |
TCA_KNN | 0.88 | 0.14 | 0.00 | 0.00 | 0.81 |
HDA_KNN | 0.82 | 0.02 | 0.00 | 0.00 | 0.75 |
Tab. 6 F1 scores of KNN on PCA, TCA, HDA
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后 并发症Ⅲa | 术后 并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
PCA_KNN | 0.79 | 0.00 | 0.00 | 0.00 | 0.67 |
TCA_KNN | 0.88 | 0.14 | 0.00 | 0.00 | 0.81 |
HDA_KNN | 0.82 | 0.02 | 0.00 | 0.00 | 0.75 |
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后 并发症Ⅲa | 术后 并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
PCA_SVM | 0.83 | 0.00 | 0.00 | 0.00 | 0.80 |
PCA_XGBoost | 0.77 | 0.12 | 0.20 | 0.40 | 0.76 |
PCA_KNN | 0.79 | 0.00 | 0.00 | 0.00 | 0.67 |
Tab. 7 F1 scores of SVM, XGBoost, KNN on PCA
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后 并发症Ⅲa | 术后 并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
PCA_SVM | 0.83 | 0.00 | 0.00 | 0.00 | 0.80 |
PCA_XGBoost | 0.77 | 0.12 | 0.20 | 0.40 | 0.76 |
PCA_KNN | 0.79 | 0.00 | 0.00 | 0.00 | 0.67 |
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后 并发症Ⅲa | 术后 并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
TCA_SVM | 0.98 | 0.94 | 0.85 | 0.88 | 0.99 |
TCA_XGBoost | 0.87 | 0.11 | 0.00 | 0.14 | 0.79 |
TCA_KNN | 0.88 | 0.14 | 0.00 | 0.00 | 0.81 |
Tab. 8 F1 scores of SVM, XGBoost, KNN on TCA
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后 并发症Ⅲa | 术后 并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
TCA_SVM | 0.98 | 0.94 | 0.85 | 0.88 | 0.99 |
TCA_XGBoost | 0.87 | 0.11 | 0.00 | 0.14 | 0.79 |
TCA_KNN | 0.88 | 0.14 | 0.00 | 0.00 | 0.81 |
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后 并发症Ⅲa | 术后 并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
HDA_SVM | 0.83 | 0.00 | 0.00 | 0.00 | 0.80 |
HDA_XGBoost | 0.76 | 0.16 | 0.00 | 0.04 | 0.76 |
HDA_KNN | 0.82 | 0.02 | 0.00 | 0.00 | 0.75 |
Tab. 9 F1 scores of SVM, XGBoost, KNN on HDA
方法 | 术后 并发症I | 术后 并发症Ⅱ | 术后 并发症Ⅲa | 术后 并发症Ⅲb | 术后 并发症Ⅳ |
---|---|---|---|---|---|
HDA_SVM | 0.83 | 0.00 | 0.00 | 0.00 | 0.80 |
HDA_XGBoost | 0.76 | 0.16 | 0.00 | 0.04 | 0.76 |
HDA_KNN | 0.82 | 0.02 | 0.00 | 0.00 | 0.75 |
1 | PRODANOVA K, UZUNOVA Y. Prediction of graft dysfunction in pediatric liver transplantation by logistic regression[C]// Proceedings of the 2020 International Conference on Mathematics and Computers in Science and Engineering. Piscataway: IEEE, 2020:260-263. 10.1109/macise49704.2020.00054 |
2 | 余忠山,江艺,蔡秋程,等. 肝移植后的并发症[J]. 中国组织工程研究, 2013, 17(18):3275-3282. 10.3969/j.issn.2095-4344.2013.18.007 |
YU Z S, JIANG Y, CAI Q C, et al. Complications after liver transplantation[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(18):3275-3282. 10.3969/j.issn.2095-4344.2013.18.007 | |
3 | 陈规划,何晓顺,叶小鸣,等. 临床原位肝移植术后并发症分析[J]. 肝胆外科杂志, 1995(3):157-159. 10.3321/j.issn:0529-5815.2008.12.009 |
CHEN G H, HE X S, YE X M, et al. Analysis of complications after clinical orthotopic liver transplantation[J]. Journal of Hepatobiliary Surgery, 1995(3):157-159. 10.3321/j.issn:0529-5815.2008.12.009 | |
4 | 《中国组织工程研究与临床康复》杂志社学术部. 中国肝移植的历史记录[J]. 中国组织工程研究与临床康复, 2011, 15(18):3365-3366. 10.1142/9789814374415_0001 |
Academic department of magazine Chinese Journal of Tissue Engineering Research. History records of liver transplantation in China[J]. Chinese Journal of Tissue Engineering Research, 2011, 15(18):3365-3366. 10.1142/9789814374415_0001 | |
5 | LIU C L, SOONG R S, LEE W C, et al. Predicting shortterm survival after liver transplantation using machine learning[J]. Scientific Reports, 2020, 10: No.5654. 10.1038/s41598-020-62387-z |
6 | KANTIDAKIS G, PUTTER H, LANCIA C, et al. Survival prediction models since liver transplantation - comparisons between cox models and machine learning techniques[J]. BMC Medical Research Methodology, 2020, 20: No.277. 10.1186/s12874-020-01153-1 |
7 | 史斌,王建立. 人工智能对肝癌患者预后预测的研究进展[J]. 解放军医学院学报, 2020, 41(9):922-925, 953. 10.3969/j.issn.2095-5227.2020.09.017 |
SHI B, WANG J L. Research advances in artificial intelligence in predicting prognosis of patients with hepatocellular carcinoma[J]. Academic Journal of Chinese PLA Medical School, 2020, 41(9):922-925, 953. 10.3969/j.issn.2095-5227.2020.09.017 | |
8 | 胡满满,陈旭,孙毓忠,等. 基于动态采样和迁移学习的疾病预测模型[J]. 计算机学报, 2019, 42(10):23392354. 10.11897/SP.J.1016.2019.02339 |
HU M M, CHEN X, SUN Y Z, et al. A disease prediction model based on dynamic sampling and transfer learning[J]. Chinese Journal of Computers, 2019, 42(10):2339-2354. 10.11897/SP.J.1016.2019.02339 | |
9 | 臧绍飞. 基于特征迁移与模型迁移的分类器设计[D]. 徐州:中国矿业大学, 2017:133. |
ZANG S F. Classifier design based on feature transfer and model transfer[D]. Xuzhou: China University of Mining and Technology, 2017:133. | |
10 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. 10.1109/tkde.2009.191 |
11 | 于重重,田蕊,谭励,等. 非平衡样本分类的集成迁移学习算法[J]. 电子学报, 2012, 40(7):1358-1363. 10.3969/j.issn.0372-2112.2012.07.012 |
YU C C, TIAN R, TAN L, et al. Integrated transfer learning algorithmic for unbalanced samples classification[J]. Acta Electronica Sinica, 2012, 40(7):1358-1363. 10.3969/j.issn.0372-2112.2012.07.012 | |
12 | PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2):199-210. 10.1109/tnn.2010.2091281 |
13 | PAN J H, HU X G, LI P P, et al. Domain adaptation via multi-layer transfer learning[J]. Neurocomputing, 2016, 190:10-24. 10.1016/j.neucom.2015.12.097 |
14 | 龙明盛. 迁移学习问题与方法研究[D]. 北京:清华大学, 2014:134. |
LONG M S. Transfer learning: problems and methods[D]. Beijing: Tsinghua University, 2014:134. | |
15 | LONG M S, WANG J M, DING G G, et al. Transfer feature learning with joint distribution adaptation[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013:2200-2207. 10.1109/iccv.2013.274 |
16 | LI J J, LU K, HUANG Z, et al. Heterogeneous domain adaptation through progressive alignment[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(5):1381-1391. 10.1109/tnnls.2018.2868854 |
17 | HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4):18-28. 10.1109/5254.708428 |
18 | 奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用, 2011, 47(3):123-124, 128. 10.3778/j.issn.1002-8331.2011.03.037 |
FENG G H. Parameter optimizing for Support Vector Machines classification[J]. Computer Engineering and Applications, 2011, 47(3):123-124, 128. 10.3778/j.issn.1002-8331.2011.03.037 |
[1] | Feiyu ZHAI, Handa MA. Hybrid classical-quantum classification model based on DenseNet [J]. Journal of Computer Applications, 2024, 44(6): 1905-1910. |
[2] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. |
[3] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[4] | Wangjun SHI, Jing WANG, Xiaojun NING, Youfang LIN. Sleep stage classification model by meta transfer learning in few-shot scenarios [J]. Journal of Computer Applications, 2024, 44(5): 1445-1451. |
[5] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[6] | Enbao QIAO, Xiangyang GAO, Jun CHENG. Self-recovery adaptive Monte Carlo localization algorithm based on support vector machine [J]. Journal of Computer Applications, 2024, 44(10): 3246-3251. |
[7] | Qiujie LIU, Yuan WAN, Jie WU. Deep bi-modal source domain symmetrical transfer learning for cross-modal retrieval [J]. Journal of Computer Applications, 2024, 44(1): 24-31. |
[8] | Xueyu HUANG, Huaiyu HE, Huimin LIN, Jinshui CHEN. Classification and recognition method of copper alloy metallograph based on feature aggregation [J]. Journal of Computer Applications, 2023, 43(8): 2593-2601. |
[9] | Kezheng CHEN, Xiaoran GUO, Yong ZHONG, Zhenping LI. Relation extraction method based on negative training and transfer learning [J]. Journal of Computer Applications, 2023, 43(8): 2426-2430. |
[10] | Zexi JIN, Lei LI, Ji LIU. Transfer learning model based on improved domain separation network [J]. Journal of Computer Applications, 2023, 43(8): 2382-2389. |
[11] | Bona XUAN, Jin LI, Yafei SONG, Zexuan MA. Malicious code classification method based on improved MobileNetV2 [J]. Journal of Computer Applications, 2023, 43(7): 2217-2225. |
[12] | Huibin ZHANG, Liping FENG, Yaojun HAO, Yining WANG. Ancient mural dynasty identification based on attention mechanism and transfer learning [J]. Journal of Computer Applications, 2023, 43(6): 1826-1832. |
[13] | Chuanbiao LI, Yuanwei BI. Stereo matching algorithm based on cross-domain adaptation [J]. Journal of Computer Applications, 2023, 43(10): 3230-3235. |
[14] | Ruijie YANG, Guilin ZHENG. Face liveness detection based on InceptionV3 and feature fusion [J]. Journal of Computer Applications, 2022, 42(7): 2037-2042. |
[15] | Lei YANG, Hongdong ZHAO, Kuaikuai YU. End-to-end speech emotion recognition based on multi-head attention [J]. Journal of Computer Applications, 2022, 42(6): 1869-1875. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||