[1] ALBERT R, BARABÁSI A-L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1):47-97. [2] GETOOR L, DIEHL C P. Link mining:a survey[J]. ACM SIGKDD Explorations Newsletter, 2005, 7(2):3-12. [3] YU H, BRAUN P, YILDIRIM M A, et al. High-quality binary protein interaction map of the yeast interactome network[J]. Science, 2008, 322(5898):104-110. [4] XIE X, LI Y, ZHANG Z, et al. A joint link prediction method for social network[C]//Proceedings of the 2015 International Conference of Young Computer Scientists, Engineers and Educators, CCIS 503. Berlin:Springer, 2015:56-64. [5] KUMAR R, NOVAK J, TOMKINS A. Structure and evolution of online social networks[M]//Link Mining:Models, Algorithms, and Applications. New York:Springer, 2010:337-357. [6] ZHANG X, ZHAO C, WANG X, et al. Identifying missing and spurious interactions in directed networks[C]//Proceedings of the 2014 International Conference on Wireless Algorithms, Systems, and Applications, LNCS 8491. Berlin:Springer, 2014:470-481. [7] ZHOU T, LYU L, ZHANG Y. Predicting missing links via local information[J]. European Physical Journal B, 2009, 71(4):623-630. [8] LEICHT E A, HOLME P, NEWMAN M E J. Vertex similarity in networks[J]. Physical Review E:Statistical Nonlinear & Soft Matter Physics, 2006, 73(2):No.026120. [9] ZADEH P M, KOBTI Z. A knowledge based framework for link prediction in social networks[C]//Proceedings of the 2016 International Symposium on Foundations of Information and Knowledge Systems, LNCS 9616. Cham:Springer, 2016:255-268. [10] 涂存超, 杨成, 刘知远,等. 网络表示学习综述[J]. 中国科学:信息科学, 2017, 47(8):980-996. (TU C C, YANG C, LIU Z Y, et al. Network representation learning:an overview[J]. SCIENTIA SINICA Information, 2017, 47(8):980-996.) [11] BEROZZI B, AL-RFOU R, SKIENA S. DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York:ACM, 2014:701-710. [12] TANG J, QU M, WANG M, et al. LINE:Large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. New York:ACM, 2015:1067-1077. [13] YANG C, SUN M, LIU Z, et al. Fast network embedding enhancement via high order proximity approximation[C]//Proceedings of the 2017 26th International Joint Conference on Artificial Intelligence. Pola Alto, CA:AAAI, 2017:3894-3900. [14] CLAUSET A, MOORE C, NEWMAN M E J. Hierarchical structure and the prediction of missing links in networks[J]. Nature, 2008, 453(7191):98-101. [15] REDNER S. Networks:teasing out the missing links[J]. Nature, 2008, 453(7191):47-48. [16] LEICHT E A, HOLME P, NEWMAN M E J. Vertex similarity in networks[J]. Physical Review E:Statistical Nonlinear & Soft Matter Physics, 2006, 73(2):No. 026120. [17] LIU Z, ZHANG Q-M, LYU L, et al. Link prediction in complex networks:a local Naive Bayes model[J]. Europhysics Letters, 2011, 96(4):No. 48007. [18] 王富田,张鹏,肖井华.链路预测算法错边识别能力的评测[J/OL]. 中国科技论文在线, 2015[2015-12-30]. http://www.paper.edu.cn/releasepaper/content/201512-1363. (WANG F T, ZHANG P, XIAO J H. Evaluation the ability of link prediction methods in the spurious link detection[J/OL]. Sciencepaper Online, 2015[2015-12-30]. http://www.paper.edu.cn/releasepaper/content/201512-1363.) [19] KATZ L. A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18(1):39-43. [20] KLEIN D J, RANDIC M. Resistance distance[J]. Journal of Mathematical Chemistry, 1993, 12(1):81-95. [21] FOUSS F, PIROTTE A, RENDERS J, et al. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation[J]. IEEE Transaction on Knowledge & Data Engineering, 2007, 19(3):355-369. [22] 田甜, 杨艳丽, 郭浩,等. 基于层次随机图模型的脑网络链路预测[J]. 计算机应用研究, 2016, 33(4):1066-1069. (TIAN T, YANG Y L, GUO H, et al. Link prediction of brain networks based on hierarchical random graph model[J]. Application Research of Computers, 2016, 33(4):1066-1069.) [23] 廖亮, 张恒锋. 基于支持向量机的机会网络链路预测[J]. 信息通信, 2018(9):28-30. (LIAO L, ZHANG H F. Link prediction based on support vector machine chance network[J]. Information & Communications, 2018(9):23-25.) [24] 吴祖峰,梁棋,刘峤,等.基于AdaBoost的链路预测优化算法[J]. 通信学报, 2014,35(3):116-123. (WU Z F, LIANG Q, LIU Q, et al. Modified link prediction algorithm based on AdaBoost[J]. Journal on Communications, 2014, 35(3):116-123.) [25] 吕伟民,王小梅,韩涛.结合链路预测和ET机器学习的科研合作推荐方法研究[J]. 数据分析与知识发现, 2017,1(4):38-45. (LYU W M, WANG X M, HAN T. Recommending scientific research collaborators with link prediction and extremely randomized trees algorithm[J]. Data Analysis and Knowledge Discovery, 2017, 1(4):38-45.) [26] 杨晓翠,宋甲秀,张曦煌.基于网络表示学习的链路预测算法[J/OL].计算机科学与探索, 2018[2018-06-25]. http://kns.cnki.net/kcms/detail/11.5602.TP.20180622.1301.008.html. (YANG X C, SONG J X, ZHANG X H. Link prediction algorithm based on network representation learning[J/OL]. Journal of Frontiers of Computer Science and Technology, 2018[2018-06-25]. http://kns.cnki.net/kcms/detail/11.5602.TP.20180622.1301.008.html.) [27] 冶忠林,曹蓉,赵海兴,等.基于矩阵分解的DeepWalk链路预测算法[J/OL].计算机应用研究, 2018[2018-12-12]. http://kns.cnki.net/KCMS/detail/51.1196.TP.20181211.1539.012.html. (YE Z L, CAO R, ZHAO H X, et al. Link prediction based on matrix factorization for DeepWalk[J/OL]. Application Research of Computers, 2018[2018-12-12]. http://kns.cnki.net/KCMS/detail/51.1196.TP.20181211.1539.012.html.) [28] 刘思, 刘海, 陈启买, 等. 基于网络表示学习与随机游走的链路预测算法[J]. 计算机应用, 2017, 37(8):2234-2239. (LIU S, LIU H, CHEN Q M, et al. Link prediction algorithm based on network representation learning and random walk[J]. Journal of Computer Applications, 2017, 37(8):2234-2239.) [29] 陈维政,张岩,李晓明.网络表示学习[J].大数据,2015,1(3):8-22. (CHEN W Z, ZHANG Y, LI X M. Network representation learning[J]. Big Data Research, 2015, 1(3):8-22.) [30] HANLEY J A, MCNEIL B J. The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve[J]. Radiology, 1982, 143(1):29-36. [31] CHEBOTAREV P, SHAMIS E. The matrix-forest theorem and measuring relations in small social groups[J]. Automation & Remote Control, 1997, 58(9):1505-1514. |