[1] 中国互联网信息中心. 第42次中国互联网络发展状况统计报告[R].北京:中国互联网信息中心,2018. (China Internet Network Information Center. The 42th statistical report of China Internet development[R]. Beijing:China Internet Network Information Center, 2018.) [2] 李洋,陈毅恒,刘挺. 微博信息传播预测研究综述[J]. 软件学报, 2016, 27(2):247-263. (LI Y, CHEN Y H, LIU T. Survey on predicting information propagation in microblogs[J]. Journal of Software, 2016, 27(2):247-263.) [3] CUI L, ZHANG X, ZHOU X, et al. Topical event detection on Twitter[C]//Proceedings of the 2016 Australasian Database Conference, LNCS 9877. Berlin:Springer, 2016:257-268. [4] LEE S, LEE S, KIM K. Bursty event detection from text streams for disaster management[C]//Proceedings of the 21st International Conference Companion on World Wide Web. New York:ACM,2012:679-682. [5] 张鲁民,贾焰,周斌,等. 一种基于情感符号的在线突发事件检测方法[J]. 计算机学报, 2013, 36(8):1659-1667. (ZHANG L M, JIA Y, ZHOU B, et al. Online bursty events detection based on emoticons[J]. Chinese Journal of Computers, 2013, 36(8):1659-1667.) [6] 郭跇秀,吕学强,李卓基. 基于突发词聚类的微博突发事件检测方法[J].计算机应用,2014,34(2):486-490. (GUO Y X, LYU X, LI Z J. Bursty topics detection approach on Chinese microblog based on burst words clustering[J]. Journal of Computer Applications, 2014, 34(2):486-490.) [7] 仲兆满,管燕,李存华,等. 微博网络地域Top-k突发事件检测[J]. 计算机学报, 2018, 41(7):1504-1516. (ZHONG Z M, GUAN Y, LI C H, et al. Localized Top-k bursty event detection in microblog[J]. Chinese Journal of Computers, 2018, 41(7):1504-1516.) [8] DU Y, HE Y, TIAN Y, et al. Microblog bursty topic detection based on user relationship[C]//Proceedings of the 6th IEEE Joint International Information Technology and Artificial Intelligence Conference. Piscataway:IEEE, 2011:260-263. [9] 姚子瑜,屠守中,黄民烈,等. 一种半监督的中文垃圾微博过滤方法[J].中文信息学报, 2016, 30(5):176-186. (YAO Z Y, TU S Z, HUANG M L, et al. A semi-supervised method for filtering Chinese spam tweets[J]. Journal of Chinese Information Processing, 2016, 30(5):176-186.) [10] 王勇,肖诗斌,郭跇秀,等. 中文微博突发事件检测研究[J]. 现代图书情报技术, 2013(2):57-62. (WANG Y,XIAO S B,GUO Y X,et al. Research on Chinese microblog bursty topics detection[J]. New Technology of Library and Information Service, 2013(2):57-62.) [11] 费绍栋,杨玉珍,刘培玉,等. 融合情感过滤的突发事件检测方法[J]. 计算机应用, 2015, 35(5):1320-1323. (FEI S D, YANG Y Z, LIU P Y, et al. Method of bursty events detection based on sentiment filter[J]. Journal of Computer Applications, 2015, 35(5):1320-1323.) [12] 马力,宫玉龙. 文本情感分析研究综述[J]. 电子科技, 2014, 27(11):180-184. (MA L, GONG Y L. Research on text sentiment analysis[J]. Electronic Science and Technology, 2014, 27(11):180-184.) [13] CHEN C C, CHEN Y T, SUN Y, et al. Life cycle modeling of news events using aging theory[C]//Proceedings of the 2003 European Conference on Machine Learning, LNCS 2837. Berlin:Springer, 2003:47-593. [14] BUN K K, ISHIZUKA M. Topic extraction from news archive using TF*PDF algorithm[C]//Proceedings of the 2002 International Conference on Web Information Systems Engineering. Piscataway:IEEE, 2002:73-82. [15] 陈国兰. 基于爆发词识别的微博突发事件监测方法研究[J]. 情报杂志, 2014(9):123-128. (CHEN G L. Micro-blog Emergencies detection approach based on burst words distinguishing[J]. Journal of Intelligence, 2014(9):123-128.) [16] DIAO Q, JIANG J, ZHU F. Finding bursty topics from microblogs[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2012:536-544. |