[1] SARKAR S,PHILLIPS P J,LIU Z,et al. The humanID gait challenge problem:data sets,performance,and analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):162-177. [2] WU Z,HUANG Y,WANG L,et al. A comprehensive study on cross-view gait based human identification with deep CNNs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(2):209-226. [3] TANG J,LUO J,TJAHJADI T,et al. Robust arbitrary-view gait recognition based on 3D partial similarity matching[J]. IEEE Transactions on Image Processing,2017,26(1):7-22. [4] ZHAO G,LIU G,LI H,et al. 3D gait recognition using multiple cameras[C]//Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Piscataway:IEEE, 2006:529-534. [5] 李锐, 陈勇, 余磊. 基于帧差能量图行质量向量的步态识别算法[J]. 计算机应用,2014,34(5):1364-1368.(LI R,CHEN Y, YU L. Gait recognition based on row mass vector of frame difference energy image[J]. Journal of Computer Applications,2014,34(5):1364-1368.) [6] HAN J,BHANU B. Individual recognition using gait energy image[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(2):316-322. [7] BOBICK A F,DAVIS J W. The recognition of human movement using temporal templates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(3):257-267. [8] LIU J,ZHENG N. Gait history image:a novel temporal template for gait recognition[C]//Proceedings of the 2007 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE,2007:663-666. [9] WANG C,ZHANG J,WANG L,et al. Human identification using temporal information preserving gait template[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012, 34(11):2164-2176. [10] IWAMA H,OKUMURA M,MAKIHARA Y,et al. The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition[J]. IEEE Transactions on Information Forensics and Security,2012,7(5):1511-1521. [11] 王科俊, 丁欣楠, 邢向磊, 等. 多视角步态识别综述[J]. 自动化学报,2019,45(5):841-852.(WANG K J,DING X N,XING X L, et al. A survey of multi-view gait recognition[J]. Acta Automatica Sinica,2019,45(5):841-852.) [12] LECUN Y,KAVUKCUOGLU K,FARABET C. Convolutional networks and applications in vision[C]//Proceedings of the 2010 IEEE International Symposium on Circuits and Systems. Piscataway:IEEE,2010:253-256. [13] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [14] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [15] TONG S,FU Y,LING H. Cross-view gait recognition based on a restrictive triplet network[J]. Pattern Recognition Letters,2019, 125:212-219. [16] YU S, CHEN H, GARCÍA REYES E B, et al. GaitGAN:invariant gait feature extraction using generative adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2017:532-539. [17] XU Z,LU W,ZHANG Q,et al. Gait recognition based on capsule network[J]. Journal of Visual Communication and Image Representation,2019,59:159-167. [18] FENG Y,LI Y,LUO J. Learning effective gait features using LSTM[C]//Proceedings of 23rd International Conference on Pattern Recognition. Piscataway:IEEE,2016:325-330. [19] SABOUR S,FROSST N,HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:2672-2680. [20] HINTON G E,KRIZHEVSKY A,WANG S D. Transforming autoencoders[C]//Proceedings of the 2011 International Conference on Artificial Neural Networks,LNCS 6791. Berlin:Springer,2011:44-51. [21] TONG S,LING H,FU Y,et al. Cross-view gait identification with embedded learning[C]//Proceedings of the 2017 Thematic Workshops of ACM Multimedia. New York:ACM, 2017:385-392. [22] YU S,TAN D,TAN T. A framework for evaluating the effect of view angle,clothing and carrying condition on gait recognition[C]//Proceedings of the 18th International Conference on Pattern Recognition. Piscataway:IEEE,2006:441-444. |