Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3139-3144.DOI: 10.11772/j.issn.1001-9081.2021030451
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Received:2021-03-24
Revised:2021-06-03
Accepted:2021-06-03
Online:2021-11-29
Published:2021-11-10
Contact:
Xujian ZHAO
About author:ZHAO Xujian,born in 1984,Ph. D.,associate professor. His research interests include text mining,natural language processing,Web information processingSupported by:通讯作者:
赵旭剑
作者简介:赵旭剑(1984—),男,四川绵阳人,副教授,博士,CCF 会员,主要研究方向:文本挖掘、自然语言处理、Web 信息处理基金资助:CLC Number:
Xujian ZHAO, Chongwei WANG. Storyline extraction method from Weibo news based on graph convolutional network[J]. Journal of Computer Applications, 2021, 41(11): 3139-3144.
赵旭剑, 王崇伟. 基于图卷积网络的微博新闻故事线抽取方法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3139-3144.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021030451
| 数据集 | 标题 | 起止日期 | 记录数 |
|---|---|---|---|
| Dataset1 | 疫苗事件 | 2018.07.01—2019.09.01 | 73 614 |
| Dataset2 | 中兴事件 | 2018.04.16—2018.07.14 | 45 113 |
Tab. 1 Specific information of datasets
| 数据集 | 标题 | 起止日期 | 记录数 |
|---|---|---|---|
| Dataset1 | 疫苗事件 | 2018.07.01—2019.09.01 | 73 614 |
| Dataset2 | 中兴事件 | 2018.04.16—2018.07.14 | 45 113 |
| 方法 | Precision | Recall | F1 | 方法 | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 贝叶斯模型 | 0.75 | 0.45 | 0.55 | 故事森林 | 0.74 | 0.51 | 0.56 |
| 斯坦纳树 | 0.65 | 0.66 | 0.63 | 本文方法 | 0.86 | 0.84 | 0.83 |
Tab.2 Story branch construction results of different methods on Dataset1
| 方法 | Precision | Recall | F1 | 方法 | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 贝叶斯模型 | 0.75 | 0.45 | 0.55 | 故事森林 | 0.74 | 0.51 | 0.56 |
| 斯坦纳树 | 0.65 | 0.66 | 0.63 | 本文方法 | 0.86 | 0.84 | 0.83 |
| 方法 | Precision | Recall | F1 | 方法 | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 贝叶斯模型 | 0.46 | 0.57 | 0.51 | 故事森林 | 0.41 | 0.56 | 0.48 |
| 斯坦纳树 | 0.50 | 0.68 | 0.58 | 本文方法 | 0.85 | 0.60 | 0.70 |
Tab.3 Story branch construction results of different methods on Dataset2
| 方法 | Precision | Recall | F1 | 方法 | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 贝叶斯模型 | 0.46 | 0.57 | 0.51 | 故事森林 | 0.41 | 0.56 | 0.48 |
| 斯坦纳树 | 0.50 | 0.68 | 0.58 | 本文方法 | 0.85 | 0.60 | 0.70 |
| 方法 | Dataset1 | Dataset2 | 方法 | Dataset1 | Dataset2 |
|---|---|---|---|---|---|
| 故事时间线 | 0.31 | 0.30 | 故事森林 | 0.47 | 0.33 |
| 斯坦纳树 | 0.41 | 0.39 | 本文方法 | 0.64 | 0.42 |
Tab. 4 Accuracy comparison of correct edge in storyline extraction by different methods
| 方法 | Dataset1 | Dataset2 | 方法 | Dataset1 | Dataset2 |
|---|---|---|---|---|---|
| 故事时间线 | 0.31 | 0.30 | 故事森林 | 0.47 | 0.33 |
| 斯坦纳树 | 0.41 | 0.39 | 本文方法 | 0.64 | 0.42 |
| 1 | LIU B, HAN F X, NIU D, et al. Story forest: extracting events and telling stories from breaking news [J]. ACM Transactions on Knowledge Discovery from Data, 2020, 14(3): Article No.31. 10.1145/3377939 |
| 2 | HUANG D P, HU S Y, CAI Y, et al. Discovering event evolution graphs based on news articles relationships [C]// Proceedings of the 2014 IEEE 11th International Conference on e-Business Engineering. Piscataway: IEEE, 2014: 246-251. 10.1109/icebe.2014.49 |
| 3 | ZHOU P P, WU B, CAO Z. EMMBTT: a novel event evolution model based on TFxIEF and TDC in tracking news streams [C]// Proceedings of the 2017 IEEE 2nd International Conference on Data Science in Cyberspace. Piscataway: IEEE, 2017: 102-107. 10.1109/dsc.2017.53 |
| 4 | 李莹莹,马帅,蒋浩谊,等.一种基于社交事件关联的故事脉络生成方法[J].计算机研究与发展,2018,55(9):1972-1986. 10.7544/issn1000-1239.2018.20180155 |
| LI Y Y, MA S, JIANG H Y, et al. An approach for storytelling by correlating events from social networks [J]. Journal of Computer Research and Development, 2018, 55(9): 1972-1986. 10.7544/issn1000-1239.2018.20180155 | |
| 5 | YUAN R F, ZHOU Q F, ZHOU W B. dTexSL: a dynamic disaster textual storyline generating framework [J]. World Wide Web, 2019, 22(5): 1913-1933. 10.1007/s11280-018-0640-8 |
| 6 | HAWWASH B, NASRAOUI O. From Tweets to Stories: using Stream-Dashboard to weave the Twitter data stream into dynamic cluster models [C]// Proceedings of the 2014 3rd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications. New York: ACM, 2014: 182-197. 10.18297/etd/587 |
| 7 | HUA T, ZHANG X C, WANG W, et al. Automatical storyline generation with help from Twitter [C]// Proceedings of the 25th ACM International Conference on Information and Knowledge Management. New York: ACM, 2016: 2383-2388. 10.1145/2983323.2983698 |
| 8 | MAKKONEN J. Investigations on event evolution on TDT [C]// Proceedings of the HLT-NAACL 2003 Student Research Workshop. Stroudsburg: ACL, 2003: 43-48. 10.3115/1073416.1073424 |
| 9 | NALLAPATI R, FENG A, PENG F C, et al. Event threading within news topics [C]// Proceedings of the 2004 13th ACM International Conference on Information and Knowledge Management. New York: ACM, 2004: 446-453. 10.1145/1031171.1031258 |
| 10 | LABAN P, HEARST M A. newsLens: building and visualizing long-ranging news stories [C]// Proceedings of the 2017 Events and Stories in the News Workshop. Stroudsburg: ACL, 2017: 1-9. 10.18653/v1/w17-2701 |
| 11 | 佘玉轩,熊赟.基于贝叶斯网络的故事线挖掘算法[J].计算机工程,2018,44(3):55-59.(SHE Y X, XIONG Y. Storyline mining algorithm based on Bayesian network [J]. Computer Engineering, 2018, 2018, 44(3): 55-59.). 10.3969/j.issn.1000-3428.2018.03.009 |
| 12 | ZHOU D Y, XU H Y, DAI X Y, et al. Unsupervised storyline extraction from news articles [C]// Proceedings of the 2016 25th International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 3014-3020. |
| 13 | WANG D D, LI T, OGIHARA M. Generating pictorial storylines via minimum-weight connected dominating set approximation in multi-view graphs [C]// Proceedings of the 2012 26th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2012: 683-689. 5074 |
| 14 | CAI H Y, HUANG Z, SRIVASTAVA D, et al. Indexing evolving events from tweet streams [J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(11): 3001-3015. 10.1109/tkde.2015.2445773 |
| 15 | LIN C, LIN C, LI J X, et al. Generating event storylines from microblogs [C]// Proceedings of the 2012 21st ACM International Conference on Information and Knowledge Management. New York: ACM, 2012: 175-184. 10.1145/2396761.2396787 |
| 16 | 李培,翁伟,林琛.中文微博故事线生成方法[J].中文信息学报,2016,30(3):143-151. 10.1007/978-3-319-41003-6_9 |
| LI P, WENG W, LIN C. Method for generating microblogs storylines [J]. Journal of Chinese Information Processing, 2016, 30(3): 143-151. 10.1007/978-3-319-41003-6_9 | |
| 17 | WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. 10.1109/tnnls.2020.2978386 |
| 18 | CHEN C C, CHEN Y T, CHEN M C. An aging theory for event life-cycle modeling [J]. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, 2007, 37(2): 237-248. 10.1109/tsmca.2006.886370 |
| 19 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2020-10-10]. . |
| [1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
| [2] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
| [3] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
| [4] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
| [5] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
| [6] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
| [7] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. |
| [8] | Tao SUN, Zhangtian DUAN, Haonan ZHU, Peihao GUO, Heli SUN. Social event recommendation method based on unexpectedness metric [J]. Journal of Computer Applications, 2024, 44(3): 760-766. |
| [9] | Yuanyuan MA, Leilei XIE, Nan DONG, Na LIU. Opinion propagation model considering user initiative and mobility [J]. Journal of Computer Applications, 2024, 44(2): 619-627. |
| [10] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. |
| [11] | Zucheng WU, Xiaojun WU, Tianyang XU. Image-text retrieval model based on intra-modal fine-grained feature relationship extraction [J]. Journal of Computer Applications, 2024, 44(12): 3776-3783. |
| [12] | Rui GAO, Xuebin CHEN, Zucuan ZHANG. Dynamic social network privacy publishing method for partial graph updating [J]. Journal of Computer Applications, 2024, 44(12): 3831-3838. |
| [13] | Xinrong HU, Jingxue CHEN, Zijian HUANG, Bangchao WANG, Xun YAO, Junping LIU, Qiang ZHU, Jie YANG. Graph convolution network-based masked data augmentation [J]. Journal of Computer Applications, 2024, 44(11): 3335-3344. |
| [14] | Shiliang LIU, Yi WANG, Yinglong MA. Non-overlapping community detection with imbalanced community sizes [J]. Journal of Computer Applications, 2024, 44(11): 3396-3402. |
| [15] | Nengqiang XIANG, Xiaofei ZHU, Zhaoze GAO. Information diffusion prediction model of prototype-aware dual-channel graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(10): 3260-3266. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
