Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (11): 3354-3363.DOI: 10.11772/j.issn.1001-9081.2021111981
Special Issue: 第九届CCF大数据学术会议(CCF Bigdata 2021)
• CCF Bigdata 2021 • Previous Articles Next Articles
Zhuoran LI1,2,3,4, Zhonglin YE1,2,3,4, Haixing ZHAO1,2,3,4(), Jingjing LIN1,2,3,4
Received:
2021-11-22
Revised:
2022-01-12
Accepted:
2022-01-14
Online:
2022-01-25
Published:
2022-11-10
Contact:
Haixing ZHAO
About author:
LI Zhuoran, born in 1996, M. S. candidate. His research interests include data mining, graph neural network.Supported by:
李卓然1,2,3,4, 冶忠林1,2,3,4, 赵海兴1,2,3,4(), 林晶晶1,2,3,4
通讯作者:
赵海兴
作者简介:
李卓然(1996—),男,内蒙古乌兰察布人,硕士研究生,CCF会员 ,主要研究方向:数据挖掘、图神经网络基金资助:
CLC Number:
Zhuoran LI, Zhonglin YE, Haixing ZHAO, Jingjing LIN. Graph convolutional network method based on hybrid feature modeling[J]. Journal of Computer Applications, 2022, 42(11): 3354-3363.
李卓然, 冶忠林, 赵海兴, 林晶晶. 基于混合特征建模的图卷积网络方法[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3354-3363.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021111981
数据集 | 节点数 | 边数 | 样本数量 | |||
---|---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | ||||
CiteSeer | 4 610 | 结构网络 | 5 923 | 1 333 | 667 | 2 610 |
语义网络 | 819 346 | |||||
DBLP | 17 725 | 结构网络 | 105 781 | 3 333 | 1 667 | 12 725 |
语义网络 | 125 360 | |||||
SDBLP | 3 119 | 结构网络 | 39 516 | 666 | 334 | 3 119 |
语义网络 | 439 182 |
Tab. 1 Dataset statistics
数据集 | 节点数 | 边数 | 样本数量 | |||
---|---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | ||||
CiteSeer | 4 610 | 结构网络 | 5 923 | 1 333 | 667 | 2 610 |
语义网络 | 819 346 | |||||
DBLP | 17 725 | 结构网络 | 105 781 | 3 333 | 1 667 | 12 725 |
语义网络 | 125 360 | |||||
SDBLP | 3 119 | 结构网络 | 39 516 | 666 | 334 | 3 119 |
语义网络 | 439 182 |
数据集 | 对比算法 | 训练集比例 | |||
---|---|---|---|---|---|
20% | 40% | 60% | 80% | ||
CiteSeer | DeepWalk | 59.30 | 61.48 | 62.30 | 62.33 |
LINE | 47.06 | 49.57 | 51.02 | 53.07 | |
TF | 61.30 | 63.05 | 63.30 | 62.19 | |
DeepWalk+TF | 61.15 | 63.37 | 63.96 | 65.49 | |
GraRep | 53.09 | 59.75 | 61.05 | 62.09 | |
HDGCN | 83.52 | 84.26 | 83.95 | 85.15 | |
DBLP | DeepWalk | 64.34 | 65.98 | 66.18 | 67.03 |
LINE | 66.53 | 67.87 | 68.30 | 68.89 | |
TF | 69.46 | 71.15 | 71.44 | 71.57 | |
DeepWalk+TF | 65.15 | 66.22 | 66.60 | 66.91 | |
GraRep | 65.90 | 67.92 | 68.88 | 69.56 | |
HDGCN | 80.47 | 80.58 | 80.74 | 80.93 | |
SDBLP | DeepWalk | 80.65 | 81.49 | 82.35 | 82.71 |
LINE | 77.01 | 78.28 | 78.97 | 78.82 | |
TF | 71.23 | 73.86 | 75.07 | 76.00 | |
DeepWalk+TF | 80.95 | 81.44 | 82.22 | 82.58 | |
GraRep | 82.52 | 84.78 | 84.17 | 85.27 | |
HDGCN | 82.45 | 82.61 | 83.23 | 83.47 |
Tab. 2 Accuracies of node classification tasks with different training set proportions
数据集 | 对比算法 | 训练集比例 | |||
---|---|---|---|---|---|
20% | 40% | 60% | 80% | ||
CiteSeer | DeepWalk | 59.30 | 61.48 | 62.30 | 62.33 |
LINE | 47.06 | 49.57 | 51.02 | 53.07 | |
TF | 61.30 | 63.05 | 63.30 | 62.19 | |
DeepWalk+TF | 61.15 | 63.37 | 63.96 | 65.49 | |
GraRep | 53.09 | 59.75 | 61.05 | 62.09 | |
HDGCN | 83.52 | 84.26 | 83.95 | 85.15 | |
DBLP | DeepWalk | 64.34 | 65.98 | 66.18 | 67.03 |
LINE | 66.53 | 67.87 | 68.30 | 68.89 | |
TF | 69.46 | 71.15 | 71.44 | 71.57 | |
DeepWalk+TF | 65.15 | 66.22 | 66.60 | 66.91 | |
GraRep | 65.90 | 67.92 | 68.88 | 69.56 | |
HDGCN | 80.47 | 80.58 | 80.74 | 80.93 | |
SDBLP | DeepWalk | 80.65 | 81.49 | 82.35 | 82.71 |
LINE | 77.01 | 78.28 | 78.97 | 78.82 | |
TF | 71.23 | 73.86 | 75.07 | 76.00 | |
DeepWalk+TF | 80.95 | 81.44 | 82.22 | 82.58 | |
GraRep | 82.52 | 84.78 | 84.17 | 85.27 | |
HDGCN | 82.45 | 82.61 | 83.23 | 83.47 |
数据集 | 特征类型 | 训练集比例 | |||||||
---|---|---|---|---|---|---|---|---|---|
20% | 40% | 60% | 80% | ||||||
Micro‑F1 | Macro‑F1 | Micro‑F1 | Macro‑F1 | Micro‑F1 | Macro‑F1 | Micro‑F1 | Macro‑F1 | ||
CiteSeer | Hybrid | 83.52 | 54.13 | 84.26 | 57.23 | 83.95 | 62.46 | 85.15 | 64.11 |
Structure | 77.58 | 52.38 | 78.75 | 58.08 | 80.26 | 62.32 | 80.69 | 64.36 | |
Semantic | 65.19 | 44.07 | 65.76 | 44.40 | 66.93 | 45.08 | 67.18 | 47.05 | |
SDBLP | Hybrid | 82.45 | 82.45 | 82.61 | 82.63 | 83.23 | 83.23 | 83.47 | 83.42 |
Structure | 81.46 | 81.15 | 82.11 | 81.82 | 81.56 | 81.15 | 82.17 | 81.90 | |
Semantic | 65.80 | 64.45 | 66.00 | 65.77 | 66.89 | 66.62 | 68.44 | 68.03 | |
DBLP | Hybrid | 80.47 | 74.45 | 80.58 | 74.70 | 80.74 | 74.85 | 80.93 | 74.99 |
Structure | 80.10 | 73.36 | 80.18 | 73.66 | 80.51 | 73.90 | 80.29 | 73.67 | |
Semantic | 64.73 | 50.10 | 65.52 | 52.06 | 66.11 | 53.27 | 66.71 | 54.28 |
Tab. 3 Comparison of Micro?F1 and Macro?F1 for node classification tasks under different training proportions
数据集 | 特征类型 | 训练集比例 | |||||||
---|---|---|---|---|---|---|---|---|---|
20% | 40% | 60% | 80% | ||||||
Micro‑F1 | Macro‑F1 | Micro‑F1 | Macro‑F1 | Micro‑F1 | Macro‑F1 | Micro‑F1 | Macro‑F1 | ||
CiteSeer | Hybrid | 83.52 | 54.13 | 84.26 | 57.23 | 83.95 | 62.46 | 85.15 | 64.11 |
Structure | 77.58 | 52.38 | 78.75 | 58.08 | 80.26 | 62.32 | 80.69 | 64.36 | |
Semantic | 65.19 | 44.07 | 65.76 | 44.40 | 66.93 | 45.08 | 67.18 | 47.05 | |
SDBLP | Hybrid | 82.45 | 82.45 | 82.61 | 82.63 | 83.23 | 83.23 | 83.47 | 83.42 |
Structure | 81.46 | 81.15 | 82.11 | 81.82 | 81.56 | 81.15 | 82.17 | 81.90 | |
Semantic | 65.80 | 64.45 | 66.00 | 65.77 | 66.89 | 66.62 | 68.44 | 68.03 | |
DBLP | Hybrid | 80.47 | 74.45 | 80.58 | 74.70 | 80.74 | 74.85 | 80.93 | 74.99 |
Structure | 80.10 | 73.36 | 80.18 | 73.66 | 80.51 | 73.90 | 80.29 | 73.67 | |
Semantic | 64.73 | 50.10 | 65.52 | 52.06 | 66.11 | 53.27 | 66.71 | 54.28 |
数据集 | 特征类型 | NMI | ARI |
---|---|---|---|
CiteSeer | 结构特征 | 58.90 | 37.17 |
语义特征 | 33.84 | 22.06 | |
混合特征 | 59.18 | 37.12 | |
SDBLP | 结构特征 | 55.93 | 56.03 |
语义特征 | 29.51 | 23.94 | |
混合特征 | 56.47 | 56.48 | |
DBLP | 结构特征 | 43.41 | 47.30 |
语义特征 | 22.68 | 20.90 | |
混合特征 | 43.33 | 45.05 |
Tab. 4 Comparison of NMI and ARI of three features under node clustering task
数据集 | 特征类型 | NMI | ARI |
---|---|---|---|
CiteSeer | 结构特征 | 58.90 | 37.17 |
语义特征 | 33.84 | 22.06 | |
混合特征 | 59.18 | 37.12 | |
SDBLP | 结构特征 | 55.93 | 56.03 |
语义特征 | 29.51 | 23.94 | |
混合特征 | 56.47 | 56.48 | |
DBLP | 结构特征 | 43.41 | 47.30 |
语义特征 | 22.68 | 20.90 | |
混合特征 | 43.33 | 45.05 |
数据集 | 融合方式 | 训练集比例 | |||
---|---|---|---|---|---|
20% | 40% | 60% | 80% | ||
CiteSeer | sum | 83.72 | 84.56 | 84.67 | 85.38 |
mean | 84.18 | 85.32 | 85.56 | 85.57 | |
concat | 83.52 | 84.26 | 83.95 | 85.15 | |
SDBLP | sum | 81.93 | 82.25 | 81.92 | 81.93 |
mean | 83.41 | 83.55 | 83.56 | 83.49 | |
concat | 82.45 | 82.61 | 83.23 | 83.47 | |
DBLP | Sum | 80.07 | 79.97 | 79.88 | 80.11 |
mean | 79.85 | 79.81 | 79.66 | 80.04 | |
concat | 80.47 | 80.58 | 80.74 | 80.93 |
Tab. 5 Accuracies of node classification tasks with three fusing methods under different training set proportions
数据集 | 融合方式 | 训练集比例 | |||
---|---|---|---|---|---|
20% | 40% | 60% | 80% | ||
CiteSeer | sum | 83.72 | 84.56 | 84.67 | 85.38 |
mean | 84.18 | 85.32 | 85.56 | 85.57 | |
concat | 83.52 | 84.26 | 83.95 | 85.15 | |
SDBLP | sum | 81.93 | 82.25 | 81.92 | 81.93 |
mean | 83.41 | 83.55 | 83.56 | 83.49 | |
concat | 82.45 | 82.61 | 83.23 | 83.47 | |
DBLP | Sum | 80.07 | 79.97 | 79.88 | 80.11 |
mean | 79.85 | 79.81 | 79.66 | 80.04 | |
concat | 80.47 | 80.58 | 80.74 | 80.93 |
1 | LIU Y, LIU S P, WANG Z F. A general framework for image fusion based on multi‑scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. 10.1016/j.inffus.2014.09.004 |
2 | EASLEY G, LABATE D, LIM W Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1):25-46. 10.1016/j.acha.2007.09.003 |
3 | KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2014: 655-665. 10.3115/v1/p14-1062 |
4 | LE Q, MIKOLOV T. Distributed representations of sentences and documents[C]// Proceedings of the 31st International Conference on Machine Learning. New York: JMLR.org, 2014:1188-1196. |
5 | ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690. 10.1109/tii.2019.2943898 |
6 | 李涛,段礼祥,张东宁,等. 自适应卷积神经网络在旋转机械故障诊断中的应用[J]. 振动与冲击, 2020, 39(16):275-282, 288. 10.13465/j.cnki.jvs.2020.16.037 |
LI T, DUAN L X, ZHANG D N, et al. Application of adaptive convolutional neural network in rotating machinery fault diagnosis[J]. Journal of Vibration and Shock, 2020, 39(16):275-282, 288. 10.13465/j.cnki.jvs.2020.16.037 | |
7 | KICK E L, McKINNEY L A, McDONALD S, et al. A multiple‑ network analysis of the world system of nations, 1995-1999[M]// SCOTT J, CARRINGTON P J. The SAGE Handbook of Social Network Analysis. Thousand Oaks, CA: SAGE Publications Ltd, 2014:311-328. 10.4135/9781446294413.n22 |
8 | LIAO L Z, HE X N, ZHANG H W, et al. Attributed social network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12):2257-2270. 10.1109/tkde.2018.2819980 |
9 | GLIGORIJEVIĆ V, BAROT M, BONNEAU R. deepNF: deep network fusion for protein function prediction[J]. Bioinformatics, 2018, 34(22):3873-3881. 10.1093/bioinformatics/bty440 |
10 | SU C, TONG J, ZHU Y J, et al. Network embedding in biomedical data science[J]. Briefings in Bioinformatics, 2020, 21(1):182-197. 10.1093/bib/bby117 |
11 | 杨力川. 基于深度学习的交通标志识别研究综述[J]. 现代计算机, 2021(15):3-5, 11. 10.3969/j.issn.1007-1423.2021.15.001 |
YANG L C. Summary of research on traffic sign recognition based on deep learning[J]. Modern Computer, 2021(15):3-5, 11. 10.3969/j.issn.1007-1423.2021.15.001 | |
12 | CUI Z Y, HENRICKSON K, KE R M, et al. Traffic graph convolutional recurrent neural network: a deep learning framework for network‑scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4883-4894. 10.1109/tits.2019.2950416 |
13 | BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2014-04-21) [2021-11-26].. |
14 | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016:3844-3852. |
15 | HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2):129-150. 10.1016/j.acha.2010.04.005 |
16 | KIPF T N, WELLING M. Semi‑supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-11-26]. . |
17 | YANG C, LIU Z Y, ZHAO D L, et al. Network representation learning with rich text information[C]// Proceedings of the 24th International Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015:2111-2117. 10.1609/aaai.v29i1.9448 |
18 | 冶忠林,赵海兴,张科,等. 基于多源信息融合的分布式词表示学习[J]. 中文信息学报, 2019, 33(10):18-30. 10.3969/j.issn.1003-0077.2019.10.003 |
YE Z L, ZHAO H X, ZHANG K, et al. Distributed word embedding via multi‑source information fusion[J]. Journal of Chinese Information Processing, 2019, 33(10):18-30. 10.3969/j.issn.1003-0077.2019.10.003 | |
19 | YE Z L, ZHAO H X, ZHANG K, et al. Tri‑party deep network representation learning using inductive matrix completion[J]. Journal of Central South University, 2019, 26(10): 2746-2758. 10.1007/s11771-019-4210-8 |
20 | YE Z L, ZHAO H X, ZHU Y, et al. HSNR: a network representation learning algorithm using hierarchical structure embedding[J]. Chinese Journal of Electronics, 2020, 29(6):1141-1152. 10.1049/cje.2020.10.001 |
21 | PEROZZI B, AL‑RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014:701-710. 10.1145/2623330.2623732 |
22 | TANG J, QU M, WANG M Z, et al. LINE: large‑scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. 10.1145/2736277.2741093 |
23 | WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234. 10.1145/2939672.2939753 |
24 | GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754 |
25 | LI R Y, WANG S, ZHU F Y, et al. Adaptive graph convolutional neural networks[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:3546-3553. 10.1609/aaai.v32i1.11691 |
26 | ZHUANG C Y, MA Q. Dual graph convolutional networks for graph‑based semi‑supervised classification[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 499-508. 10.1145/3178876.3186116 |
27 | XU B B, SHEN H W, CAO Q, et al. Graph wavelet neural network[EB/OL]. (2019-04-12) [2021-11-26].. |
28 | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. 10.1109/tnn.2008.2005605 |
29 | LI Y J, ZEMEL R, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[EB/OL]. (2017-09-22) [2021-11-26].. |
30 | ATWOOD J, TOWSLEY D. Diffusion‑convolutional neural networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016:2001-2009. |
31 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:1025-1035. 10.7551/mitpress/11474.003.0014 |
32 | GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017:1263-1272. |
33 | MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:5425-5434. 10.1109/cvpr.2017.576 |
34 | WANG X L, GIRSHICK R, GUPTA A, et al. Non‑local neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:7794-7803. 10.1109/cvpr.2018.00813 |
35 | BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[EB/OL]. (2018-10-17) [2021-11-26].. |
36 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2021-11-26].. |
37 | ZHANG J N, SHI X J, XIE J Y, et al. GaAN: gated attention networks for learning on large and spatiotemporal graphs[C]// Proceedings of the Thirty‑Fourth Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2018: No.139. |
38 | CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11) [2021-11-26].. 10.1007/978-3-030-89929-5_3 |
39 | LIANG X D, SHEN X H, FENG J S, et al. Semantic object parsing with Graph LSTM[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016:125-143. |
40 | ZHANG Y, LIU Q, SONG L F. Sentence‑state LSTM for text representation[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018:317-327. 10.18653/v1/p18-1030 |
41 | HOCHREITER S, SCHMIDHUBER J. Long short‑term memory[J]. Neural Computation, 1997, 9(8):1735-1780. 10.1162/neco.1997.9.8.1735 |
42 | LI X H, WEN L J, QIAN C, et al. GAHNE: graph‑aggregated heterogeneous network embedding[C]// Proceedings of the IEEE 32nd International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2020:1012-1019. 10.1109/ictai50040.2020.00157 |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[9] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[10] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[11] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[12] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[15] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||