| 1 | YANG J, LESKOVEC J. Patterns of temporal variation in online media[C]// Proceedings of the 4th ACM International Conference on Web Search and Web Data Mining. New York: ACM, 2011:177-186.  10.1145/1935826.1935863 | 
																													
																							| 2 | BERNDT D J, CLIFFORD J. Using dynamic time warping to find patterns in time series[C]// Proceedings of the 1994 AAAI Conference on Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1994:359-370. | 
																													
																							| 3 | SZABO G, HUBERMAN B A. Predicting the popularity of online content[J]. Communication of the ACM, 2010, 53(8):80-88.  10.1145/1787234.1787254 | 
																													
																							| 4 | 朱海龙,云晓春,韩志帅. 基于传播加速度的微博流行度预测方法[J]. 计算机研究与发展, 2018, 55(6):1282-1293.  10.7544/issn1000-1239.2018.20161057 | 
																													
																							|  | ZHU H L, YUN X C, HAN Z S. Weibo popularity prediction method based on propagation acceleration[J]. Journal of Computer Research and Development, 2018, 55(6):1282-1293.  10.7544/issn1000-1239.2018.20161057 | 
																													
																							| 5 | BAO P, SHEN H W, HUANG J M, et al. Popularity prediction in microblogging network: a case study on Sina Weibo[C]// Proceedings of the 22nd International Conference on World Wide Web. New York: ACM, 2013:177-178.  10.1145/2487788.2487877 | 
																													
																							| 6 | 高金华,沈华伟,程学旗,等. 基于相似消息的流行度预测方法[J]. 中文信息学报, 2018, 32(11):79-85.  10.3969/j.issn.1003-0077.2018.11.011 | 
																													
																							|  | GAO J H, SHEN H W, CHENG X Q, et al. Popularity prediction method based on similar historical tweets[J] Journal of Chinese Information Processing, 2018, 32(11):79-85.  10.3969/j.issn.1003-0077.2018.11.011 | 
																													
																							| 7 | WANG X M, FANG B X, ZHANG H L, et al. Predicting the popularity of news based on competitive matrix[C]// Proceedings of the IEEE 2nd International Conference on Data Science in Cyberspace. Piscataway: IEEE, 2017:151-155.  10.1109/dsc.2017.88 | 
																													
																							| 8 | AHMED M, SPAGNA S, HUICI F, et al. A peek into the future: predicting the evolution of popularity in user generated content[C]// Proceedings of the 6th ACM International Conference on Web Search and Data Mining. New York: ACM, 2013:607-616.  10.1145/2433396.2433473 | 
																													
																							| 9 | LYMPEROPOULOS I N. RC‑Tweet: modeling and predicting the popularity of tweets through the dynamics of a capacitor[J]. Expert Systems with Applications, 2021, 163: No.113785.  10.1016/j.eswa.2020.113785 | 
																													
																							| 10 | TSAGKIAS M, WEERKAMP W, DE RIJKE M. Predicting the volume of comments on online news stories[C]// Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM, 2009:1765-1768.  10.1145/1645953.1646225 | 
																													
																							| 11 | FIGUEIREDO F, BENEVENUTO F, ALMEIDA J. The tube over time: characterizing popularity growth of YouTube videos[C]// Proceedings of the 4th ACM International Conference on Web Search and Web Data Mining. New York: ACM, 2011:745-754.  10.1145/1935826.1935925 | 
																													
																							| 12 | 钟志豪,肖井华,吴晔,等. 基于抖音平台的在线短视频流行度建模研究[J]. 电子科技大学学报, 2021, 50(5):774-781.  10.12178/1001-0548.2021035 | 
																													
																							|  | ZHONG Z H, XIAO J H, WU Y, et al. Modeling dynamics of online short video popularity based on Douyin platform[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(5):774-781.  10.12178/1001-0548.2021035 | 
																													
																							| 13 | GAO X F, ZHENG Z W, CHU Q Q, et al. Popularity prediction for single tweet based on heterogeneous Bass model[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(5):2165-2178. | 
																													
																							| 14 | HU Y, HU C J, FU S S, et al. Predicting the popularity of viral topics based on time series forecasting[J]. Neurocomputing, 2016, 210:55-65.  10.1016/j.neucom.2015.10.143 | 
																													
																							| 15 | LI J N, GAO Y R, GAO X F, et al. SENTI2POP: sentiment‑ aware topic popularity prediction on social media[C]// Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway: IEEE, 2019: 1174-1179.  10.1109/icdm.2019.00143 | 
																													
																							| 16 | WANG X, WANG C, DING Z Y, et al. Predicting the popularity of topics based on user sentiment in microblogging websites[J]. Journal of Intelligent Information Systems, 2018, 51(1): 97-114.  10.1007/s10844-017-0486-z | 
																													
																							| 17 | GUPTA M, GAO J, ZHAI C X, et al. Predicting future popularity trend of events in microblogging platforms[J]. Proceedings of the American Society for Information Science and Technology, 2012, 49(1):1-10.  10.1002/meet.14504901207 | 
																													
																							| 18 | 王新乐,杨文峰,廖华明,等. 基于多维度特征的主题标签流行度预测[J]. 山东大学学报(理学版), 2020, 55(1):94-101. | 
																													
																							|  | WANG X L, YANG W F, LIAO H M, et al. Popularity prediction of hashtags based on multi‑dimensional features[J]. Journal of Shandong University (Natural Science), 2020, 55(1):94-101. | 
																													
																							| 19 | MATSUBARA Y, SAKURAI Y, PRAKASH B A, et al. Rise and fall patterns of information diffusion: model and implications[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 6-14.  10.1145/2339530.2339537 |