Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (8): 2378-2385.DOI: 10.11772/j.issn.1001-9081.2021061005
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Xinyu ZHANG1,2, Sheng DING1,2(), Zhipei YANG1,2
Received:
2021-06-15
Revised:
2021-10-03
Accepted:
2021-10-18
Online:
2022-01-25
Published:
2022-08-10
Contact:
Sheng DING
About author:
ZHANG Xinyu, born in 1996, M. S. candidate. His research interests include computer vision, deep learning.Supported by:
通讯作者:
丁胜
作者简介:
张新宇(1996—),男,河南焦作人,硕士研究生,主要研究方向:计算机视觉、深度学习;基金资助:
CLC Number:
Xinyu ZHANG, Sheng DING, Zhipei YANG. Traffic sign detection algorithm based on improved attention mechanism[J]. Journal of Computer Applications, 2022, 42(8): 2378-2385.
张新宇, 丁胜, 杨治佩. 基于改进注意力机制的交通标志检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2378-2385.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021061005
特征图 | 感受野 | Anchor | ||
---|---|---|---|---|
19×19 | 大 | (24,39) | (35,73) | 72,116 |
38×38 | 中 | (16,26) | (17,47) | (22,59) |
76×76 | 小 | (10,26) | (12,23) | (14,40) |
Tab. 1 Anchors generated by k-means++ algorithm
特征图 | 感受野 | Anchor | ||
---|---|---|---|---|
19×19 | 大 | (24,39) | (35,73) | 72,116 |
38×38 | 中 | (16,26) | (17,47) | (22,59) |
76×76 | 小 | (10,26) | (12,23) | (14,40) |
算法 | 额外参数量 | 额外计算量 | mAP/% |
---|---|---|---|
YOLOv4 | 0 | 0 | 95.47 |
YOLOv4+FcaNet | 1 136 320 | 121 831 468 | 96.19 |
YOLOv4+FcaNet-E | 5 206 | 36 506 | 96.28 |
Tab. 2 Comparison of YOLOv4 algorithms before and after introducing channel attention module
算法 | 额外参数量 | 额外计算量 | mAP/% |
---|---|---|---|
YOLOv4 | 0 | 0 | 95.47 |
YOLOv4+FcaNet | 1 136 320 | 121 831 468 | 96.19 |
YOLOv4+FcaNet-E | 5 206 | 36 506 | 96.28 |
算法 | 额外计算量 | 单张耗时/s | mAP/% |
---|---|---|---|
CBAM | 44 648 488 | 0.041 | 96.55 |
改进后的CBAM | 29 773 | 0.025 | 93.19 |
FcaNet-E | 36 506 | 0.025 | 96.28 |
Tab. 3 Comparison of FcaNet-E and CBAM attention mechanism modules
算法 | 额外计算量 | 单张耗时/s | mAP/% |
---|---|---|---|
CBAM | 44 648 488 | 0.041 | 96.55 |
改进后的CBAM | 29 773 | 0.025 | 93.19 |
FcaNet-E | 36 506 | 0.025 | 96.28 |
算法 | 单张耗时/s | AP/% | mAP/% | ||
---|---|---|---|---|---|
禁止 | 指示 | 警告 | |||
Faster R-CNN | 0.142 | 99.16 | 92.47 | 91.82 | 94.48 |
YOLOv3 | 0.034 | 99.02 | 92.31 | 88.28 | 93.20 |
YOLOv4 | 0.019 | 93.14 | 96.69 | 96.57 | 95.47 |
YOLOv5s | 0.015 | 93.17 | 91.48 | 95.79 | 93.48 |
本文算法 | 0.025 | 96.48 | 96.73 | 97.42 | 96.88 |
Tab. 4 Comparison results of different algorithms on CCTSDB dataset(IoU=0.5)
算法 | 单张耗时/s | AP/% | mAP/% | ||
---|---|---|---|---|---|
禁止 | 指示 | 警告 | |||
Faster R-CNN | 0.142 | 99.16 | 92.47 | 91.82 | 94.48 |
YOLOv3 | 0.034 | 99.02 | 92.31 | 88.28 | 93.20 |
YOLOv4 | 0.019 | 93.14 | 96.69 | 96.57 | 95.47 |
YOLOv5s | 0.015 | 93.17 | 91.48 | 95.79 | 93.48 |
本文算法 | 0.025 | 96.48 | 96.73 | 97.42 | 96.88 |
FcaNet | FcaNet-E | SCRFB | mAP |
---|---|---|---|
√ | 96.19 | ||
√ | 96.28 | ||
√ | 96.09 | ||
√ | √ | 96.71 | |
√ | √ | 96.88 | |
95.47 |
Tab. 5 mAP comparison after adding each module to YOLOv4 network
FcaNet | FcaNet-E | SCRFB | mAP |
---|---|---|---|
√ | 96.19 | ||
√ | 96.28 | ||
√ | 96.09 | ||
√ | √ | 96.71 | |
√ | √ | 96.88 | |
95.47 |
1 | 刘丹,吴亚娟,罗南超,等.嵌入注意力和特征交织模块的Gaussian-YOLO v3目标检测[J].计算机应用, 2020, 40(8): 2225-2230. 10.11772/j.issn.1001-9081.2020010030 |
LIU D, WU Y J, LUO N C, et al. Object detection of Gaussian-YOLO v3 implanting attention and feature intertwine modules[J]. Journal of Computer Applications, 2020, 40(8): 2225-2230. 10.11772/j.issn.1001-9081.2020010030 | |
2 | 喻清挺,喻维超,喻国平.基于改进R-FCN的交通标志检测[J].计算机工程, 2021, 47(12): 285-290, 298. 10.1109/citce54390.2021.00008 |
YU Q T, YU W C, YU G P. Traffic sigh detection based on improved R-FCN[J]. Computer Engineering, 2021, 47(12): 285-290, 298. 10.1109/citce54390.2021.00008 | |
3 | 周苏,支雪磊,刘懂,等.基于卷积神经网络的小目标交通标志检测算法[J].同济大学学报(自然科学版), 2019, 47(11): 1626-1632. |
ZHOU S, ZHI X L, LIU D, et al. A convolutional neural network-based method for small traffic sign detection[J]. Journal of Tongji University (Natural Science), 2019, 47(11): 1626-1632. | |
4 | 刘紫燕,袁磊,朱明成,等.融合SPP和改进FPN的YOLOv3交通标志检测[J].计算机工程与应用, 2021, 57(7): 164-170. |
LIU Z Y, YUAN L, ZHU M C, et al. YOLOv3 traffic sign detection based on SPP and improved FPN[J]. Computer Engineering and Applications, 2021, 57(7): 164-170. | |
5 | 田锋,雷印杰,邓棋.基于YOLOv3的自然路况信息识别研究[J].计算机应用研究, 2020, 37(S1): 391-393. |
TIAN F, LEI Y J, DENG Q. Research on natural road condition information recognition based on YOLOv3[J]. Application Research of Computers, 2020, 37(S1): 391-393. | |
6 | AYTAÇ KORKMAZ S, AKÇIÇEK A, BÍNOL H, et al. Recognition of the stomach cancer images with probabilistic HOG feature vector histograms by using HOG features [C]// Proceedings of the IEEE 15th International Symposium on Intelligent Systems and Informatics. Piscataway: IEEE, 2017: 339-342. 10.1109/sisy.2017.8080578 |
7 | LIAO M H, ZHU Z, SHI B G, et al. Rotation-sensitive regression for oriented scene text detection [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5909-5918. 10.1109/cvpr.2018.00619 |
8 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 91-99. |
9 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
10 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
11 | 鲍敬源,薛榕刚.基于YOLOv3模型压缩的交通标志实时检测算法[J].计算机工程与应用, 2020, 56(23): 202-210. |
BAO J Y, XUE R G. Compression algorithm of traffic sign real-time detection based on YOLOv3 model[J]. Computer Engineering and Applications, 2020, 56(23): 202-210. | |
12 | 江金洪,鲍胜利,史文旭,等.基于YOLO v3算法改进的交通标志识别算法[J].计算机应用, 2020, 40(8): 2472-2478. |
JIANG J H, BAO S L, SHI W X, et al. Improved traffic sign recognition algorithm based on YOLO v3 algorithm[J]. Journal of Computer Applications, 2020, 40(8): 2472-2478. | |
13 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. 10.1109/cvpr.2018.00913 |
14 | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. 10.1109/tpami.2015.2389824 |
15 | 卞鹏程,郑忠龙,李明禄,等.基于注意力融合网络的视频超分辨率重建[J].计算机应用, 2021, 41(4): 1012-1019. |
BIAN P C, ZHENG Z L, LI M L, et al. Attention fusion network based video super-resolution reconstruction[J]. Journal of Computer Applications, 2021, 41(4): 1012-1019. | |
16 | 刘剑峰,潘晨.增强特征金字塔结构的显著目标检测算法[J/OL].计算机工程与应用. (2021-04-19) [2021-08-21]. . 10.3778/j.issn.1002-8331.2011-0111 |
LIU J F, PAN C. Salient object detection algorithm for enhanced feature pyramid structure[J/OL]. Computer Engineering and Applications. (2021-04-19) [2021-08-21]. . 10.3778/j.issn.1002-8331.2011-0111 | |
17 | 付国栋,黄进,杨涛,等.改进CBAM的轻量级注意力模型[J].计算机工程与应用, 2021, 57(20): 150-156. |
FU G D, HUANG J, YANG T, et al. Improved lightweight attention model based on CBAM[J]. Computer Engineering and Applications, 2021, 57(20): 150-156. | |
18 | QIN Z Q, ZHANG P Y, WU F, et al. FcaNet: frequency channel attention networks [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2016: 763-772. |
19 | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539. 10.1109/cvpr42600.2020.01155 |
20 | 白士磊,殷柯欣,朱建启.轻量级YOLOv3的交通标志检测算法[J].计算机与现代化, 2020(9): 83-88, 94. 10.3969/j.issn.1006-2475.2020.09.015 |
BAI S L, YIN K X, ZHU J Q. Lightweight YOLOv3 traffic sign detection algorithm[J]. Computer and Modernization, 2020(9): 83-88, 94. 10.3969/j.issn.1006-2475.2020.09.015 | |
21 | 李成豪,张静,胡莉,等.基于多尺度感受野融合的小目标检测算法[J/OL].计算机工程与应用. (2021-04-20) [2021-08-21]. . 10.3778/j.issn.1002-8331.2101-0009 |
LI C H, ZHANG J, HU L, et al. Small object detection algorithm based on multi-scale receptive field fusion[J]. Computer Engineering and Applications. (2021-04-20) [2021-08-21]. . 10.3778/j.issn.1002-8331.2101-0009 | |
22 | LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11215. Cham: Springer, 2018: 404-419. |
23 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. 10.1109/cvpr.2015.7298594 |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[10] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||