Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (4): 1080-1085.DOI: 10.11772/j.issn.1001-9081.2023040490
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                    Quan YUAN1,2, Changping CHEN1,2( ), Ze CHEN1,2, Linfeng ZHAN1,2
), Ze CHEN1,2, Linfeng ZHAN1,2
												  
						
						
						
					
				
Received:2023-05-04
															
							
																	Revised:2023-07-03
															
							
																	Accepted:2023-07-10
															
							
							
																	Online:2023-12-04
															
							
																	Published:2024-04-10
															
							
						Contact:
								Changping CHEN   
													About author:YUAN Quan, born in 1976, M. S., senior engineer. His research interests include big data, natural language processing.
        
                   
            袁泉1,2, 陈昌平1,2( ), 陈泽1,2, 詹林峰1,2
), 陈泽1,2, 詹林峰1,2
                  
        
        
        
        
    
通讯作者:
					陈昌平
							作者简介:袁泉(1976—),男,湖南邵阳人,正高级工程师,硕士,主要研究方向:大数据、自然语言处理CLC Number:
Quan YUAN, Changping CHEN, Ze CHEN, Linfeng ZHAN. Twice attention mechanism distantly supervised relation extraction based on BERT[J]. Journal of Computer Applications, 2024, 44(4): 1080-1085.
袁泉, 陈昌平, 陈泽, 詹林峰. 基于BERT的两次注意力机制远程监督关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1080-1085.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023040490
| 数据集 | 关系种类数 | 样本总数 | 测试集样本总数 | 测试集 | 
|---|---|---|---|---|
| NYT-10d | 58 | 694 000 | 172 000 | Distant sup | 
| NYT-10m | 25 | 474 000 | 9 740 | Manual | 
Tab. 1 Dataset details
| 数据集 | 关系种类数 | 样本总数 | 测试集样本总数 | 测试集 | 
|---|---|---|---|---|
| NYT-10d | 58 | 694 000 | 172 000 | Distant sup | 
| NYT-10m | 25 | 474 000 | 9 740 | Manual | 
| 参数名 | 符号 | 参数值 | 
|---|---|---|
| 词向量维度 | Embedding_dim | 768 | 
| 学习率 | Lr | 10-5,2×10-5 | 
| 句子最大长度 | Max_length | 512 | 
| 批处理数 | Batch_size | 16,32,64 | 
| Dropout | Dropout | 0.5 | 
Tab. 2 Model hyperparameters
| 参数名 | 符号 | 参数值 | 
|---|---|---|
| 词向量维度 | Embedding_dim | 768 | 
| 学习率 | Lr | 10-5,2×10-5 | 
| 句子最大长度 | Max_length | 512 | 
| 批处理数 | Batch_size | 16,32,64 | 
| Dropout | Dropout | 0.5 | 
| 方法 | AUC | P@M | 
|---|---|---|
| 文献[ | 10.7 | 49.2 | 
| PCNN-ATT | 34.1 | 69.4 | 
| TARE | 38.9 | 71.5 | 
Tab. 3 Experimental results of different methods on NYT-10d dataset
| 方法 | AUC | P@M | 
|---|---|---|
| 文献[ | 10.7 | 49.2 | 
| PCNN-ATT | 34.1 | 69.4 | 
| TARE | 38.9 | 71.5 | 
| 方法 | AUC | F1 | P@M | 
|---|---|---|---|
| PCNN-ATT | 41.9 | 32.0 | 68.6 | 
| DISTRE | 35.7 | 31.4 | 65.1 | 
| CIL | 56.0 | 34.3 | 75.9 | 
| TARE | 54.1 | 38.3 | 87.2 | 
Tab. 4 Experimental results of different methods on NYT-10m dataset
| 方法 | AUC | F1 | P@M | 
|---|---|---|---|
| PCNN-ATT | 41.9 | 32.0 | 68.6 | 
| DISTRE | 35.7 | 31.4 | 65.1 | 
| CIL | 56.0 | 34.3 | 75.9 | 
| TARE | 54.1 | 38.3 | 87.2 | 
| 模型 | NYT-10m | NYT-10d | |||
|---|---|---|---|---|---|
| AUC | F1 | P@M | AUC | P@M | |
| TARE | 54.1 | 38.4 | 87.3 | 38.9 | 71.5 | 
| No Sentence-attention | 53.0 | 35.3 | 86.2 | 37.3 | 70.2 | 
| No self-attention | 51.3 | 32.4 | 85.3 | 34.7 | 69.4 | 
Tab. 5 Ablation experiment results on NYT-10m and NYT-10d dataset
| 模型 | NYT-10m | NYT-10d | |||
|---|---|---|---|---|---|
| AUC | F1 | P@M | AUC | P@M | |
| TARE | 54.1 | 38.4 | 87.3 | 38.9 | 71.5 | 
| No Sentence-attention | 53.0 | 35.3 | 86.2 | 37.3 | 70.2 | 
| No self-attention | 51.3 | 32.4 | 85.3 | 34.7 | 69.4 | 
| 1 | ALT C, GABRYSZAK A, HENNIG L. Probing linguistic features of sentence-level representations in neural relation extraction[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020:1534-1545. 10.18653/v1/2020.acl-main.140 | 
| 2 | TANG Y, HUANG J, WANG G, et al. Orthogonal relation transforms with graph context modeling for knowledge graph embedding[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020:2713-2722. 10.18653/v1/2020.acl-main.241 | 
| 3 | WANG C, JIANG H. Explicit utilization of general knowledge in machine reading comprehension[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019:2263-2272. 10.18653/v1/p19-1219 | 
| 4 | SAXENA A, TRIPATHI A, TALUKDAR P. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020:4498-4507. 10.18653/v1/2020.acl-main.412 | 
| 5 | WEI Z, SU J, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020:1476-1488. 10.18653/v1/2020.acl-main.136 | 
| 6 | ALT C, HÜBER M, HENNIG L. Fine-tuning pre-trained transformer language models to distantly supervised relation extraction[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019:1388-1398. 10.18653/v1/p19-1134 | 
| 7 | VEYSEH A P B, DERNONCOURT F, DOU D J, et al. Exploiting the syntax-model consistency for neural relation extraction[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020:8021-8032. 10.18653/v1/2020.acl-main.715 | 
| 8 | MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]// Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Stroudsburg: ACL, 2009:1003-1011. 10.3115/1690219.1690287 | 
| 9 | ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network[C]// Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. Stroudsburg: ACL, 2014:2335-2344. | 
| 10 | QIN P, XU W, WANG W Y. DSGAN: generative adversarial training for distant supervision relation extraction[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2018:496-505. 10.18653/v1/p18-1046 | 
| 11 | HOFFMANN R, ZHANG C, LING X, et al. Knowledge-based weak supervision for information extraction of overlapping relations[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Stroudsburg: ACL, 2011:541-550. | 
| 12 | RITTER A, ZETTLEMOYER L, MAUSAM, et al. Modeling missing data in distant supervision for information extraction[J]. Transactions of the Association for Computational Linguistics, 2013, 1:367-378. 10.1162/tacl_a_00234 | 
| 13 | SURDEANU M, TIBSHIRANI J, NALLAPATI R, et al. Multi-instance multi-label learning for relation extraction[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: ACL, 2012:455-465. | 
| 14 | ZENG D, LIU K, CHEN Y, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015:1753-1762. 10.18653/v1/d15-1203 | 
| 15 | VASHISHTH S, JOSHI R, PRAYAGA S S, et al. RESIDE: improving distantly-supervised neural relation extraction using side information[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018:1257-1266. 10.18653/v1/d18-1157 | 
| 16 | CHEN T, SHI H, TANG S, et al. CIL: contrastive instance learning framework for distantly supervised relation extraction[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021:6191-6200. 10.18653/v1/2021.acl-long.483 | 
| 17 | 王佳宇,李楹,马春梅,等. 融合实体信息的图卷积神经网络的短文本分类模型[J].天津师范大学学报(自然科学版),2023,43(1):67-72. | 
| WANG J Y, LI Y, MA C M, et al. Short text classification based on graph convolutional neural networks with entity information[J]. Journal Tianjin Normal University (Natural Science Edition), 2023,43(1):67-72. | |
| 18 | 唐焕玲,卫红敏,王育林, 等. 结合LDA与Word2vec的文本语义增强方法[J].计算机工程与应用,2022,58(13):135-145. 10.3778/j.issn.1002-8331.2112-0491 | 
| TANG H L, WEI H M, WANG Y L, et al. Text semantic enhancement method combining LDA and Word2vec[J]. Computer Engineering and Applications, 2022,58(13):135-145. 10.3778/j.issn.1002-8331.2112-0491 | |
| 19 | ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2016:207-212. 10.18653/v1/p16-2034 | 
| 20 | YE Z-X, LING Z-H. Distant supervision relation extraction with intra-bag and inter-bag attentions[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019:2810-2819. 10.18653/v1/n19-1288 | 
| 21 | LI D, ZHANG T, HU N, et al. HiCLRE: a hierarchical contrastive learning framework for distantly supervised relation extraction[C]// Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022:2567-2578. 10.18653/v1/2022.findings-acl.202 | 
| 22 | RATHORE V, BADOLA K, SINGLA P, et al. PARE: a simple and strong baseline for monolingual and multilingual distantly supervised relation extraction[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2022:340-354. 10.18653/v1/2022.acl-short.38 | 
| 23 | RIEDEL S, YAO L, McCALLUM A. Modeling relations and their mentions without labeled text[C]// Proceedings of the 2010 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham:Springer,2010:148-163. 10.1007/978-3-642-15939-8_10 | 
| 24 | BHARTIYA A, BADOLA K, MAUSAM. DiS-ReX: a multilingual dataset for distantly supervised relation extraction[C]// Proceeding of the 60th Annual Meeting of the Association for Computational Linguistics(Volume 2: Short Papers). Stroudsburg: ACL, 2022:849-863. 10.18653/v1/2022.acl-short.95 | 
| 25 | LIN Y, SHEN S, LIU Z, et al. Neural relation extraction with selective attention over instances[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2016:2124-2133. 10.18653/v1/p16-1200 | 
| [1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [3] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. | 
| [4] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. | 
| [5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. | 
| [6] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. | 
| [7] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. | 
| [8] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. | 
| [9] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. | 
| [10] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [11] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [12] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. | 
| [13] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. | 
| [14] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| [15] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||