Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3503-3512.DOI: 10.11772/j.issn.1001-9081.2023111559
• Advanced computing • Previous Articles Next Articles
Qingyuan PENG1, Xiaofeng WANG1,2(), Junxia WANG1, Yingying HUA1, Ao TANG1, Fei HE1
Received:
2023-11-13
Revised:
2023-12-28
Accepted:
2024-01-19
Online:
2024-02-29
Published:
2024-11-10
Contact:
Xiaofeng WANG
About author:
PENG Qingyuan, born in 1998, M. S. candidate. Her research interests include algorithm analysis and design.Supported by:
彭庆媛1, 王晓峰1,2(), 王军霞1, 华盈盈1, 唐傲1, 何飞1
通讯作者:
王晓峰
作者简介:
彭庆媛(1998—),女,云南丽江人,硕士研究生,CCF会员,主要研究方向:算法分析与设计基金资助:
CLC Number:
Qingyuan PENG, Xiaofeng WANG, Junxia WANG, Yingying HUA, Ao TANG, Fei HE. Review of phase transition in satisfiability problems[J]. Journal of Computer Applications, 2024, 44(11): 3503-3512.
彭庆媛, 王晓峰, 王军霞, 华盈盈, 唐傲, 何飞. 可满足性问题相变研究综述[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3503-3512.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023111559
1.000 | 1.000 | |
3.859 | 3.859 | |
9.380 | 9.547 | |
19.160 | 20.800 | |
36.530 | 43.080 |
Tab. 1 Clustering phase transition point and condensation phase transition point of random k-SAT problem
1.000 | 1.000 | |
3.859 | 3.859 | |
9.380 | 9.547 | |
19.160 | 20.800 | |
36.530 | 43.080 |
相变上下界 | 文献序号 | 发表年 | 阈值 |
---|---|---|---|
上界 | [ | 2000 | 4.506 |
[ | 2006 | 4.571 | |
[ | 2009 | 4.489 8 | |
下界 | [ | 2000 | 3.26 |
[ | 2003 | 3.42 | |
[ | 2006 | 3.52 |
Tab. 2 Satisfiability phase transition threshold of random 3-SAT problem
相变上下界 | 文献序号 | 发表年 | 阈值 |
---|---|---|---|
上界 | [ | 2000 | 4.506 |
[ | 2006 | 4.571 | |
[ | 2009 | 4.489 8 | |
下界 | [ | 2000 | 3.26 |
[ | 2003 | 3.42 | |
[ | 2006 | 3.52 |
下界 | 上界 | ||
---|---|---|---|
3 | 4 | 2.667 | 3.782 22 |
4 | 16 | 8 | 9.107 76 |
7 | 296 | 84.571 | 85.879 1 |
10 | 3 524 | 704.8 | 705.953 3 |
15 | 170 298 | 22 706.4 | 22 707.5 |
17 | 772 182 | 90 844.94 | 90 845.9 |
Tab. 3 Bounds on satisfiable phase transition thresholds for strictly regular random (k,r)-SAT problems
下界 | 上界 | ||
---|---|---|---|
3 | 4 | 2.667 | 3.782 22 |
4 | 16 | 8 | 9.107 76 |
7 | 296 | 84.571 | 85.879 1 |
10 | 3 524 | 704.8 | 705.953 3 |
15 | 170 298 | 22 706.4 | 22 707.5 |
17 | 772 182 | 90 844.94 | 90 845.9 |
1 | MACKWORTH A K. Consistency in networks of relations[J]. Artificial Intelligence, 1977, 8(1): 99-118. |
2 | JOHNSON D S. The NP-completeness column: an ongoing guide[J]. Journal of Algorithms, 1987, 6(3):438-448. |
3 | DECHTER R, PEARL J. Network-based heuristics for constraint-satisfaction problems[J]. Artificial Intelligence, 1987, 34(1): 1-38. |
4 | CHEESEMAN P C, KANEFSKY B, TAYLOR W M. Where the really hard problems are[C]// Proceedings of the 12th International Joint Conference on Artificial Intelligence: Volume 1. San Francisco: Morgan Kaufmann Publishers Inc., 1991: 331-337. |
5 | 刘燕丽,徐振兴,熊丹.基于动态奖惩的分支策略的SAT完备算法[J].计算机应用, 2017,37(12):3487-3492. |
LIU Y L, XU Z X, XIONG D. Exact SAT algorithm based on dynamic branching strategy of award and punishment[J]. Journal of Computer Applications, 2017, 37(12): 3487-3492. | |
6 | 赵星宇,王晓峰,杨易,等.求解恰当可满足性问题的随机局部搜索算法[J].计算机应用,2024,44(3):842-848. |
ZHAO X Y, WANG X F, YANG Y, et al. Stochastic local search algorithm for solving exact satisfiability problem[J]. Journal of Computer Applications, 2024, 44(3): 842-848. | |
7 | 庞立超,王晓峰,谢志新,等.随机正则3-可满足性问题的解簇结构分析[J].计算机应用,2024,44(7):2137-2143. |
PANG L C, WANG X F, XIE Z X, et al. Solution cluster structure analysis of random regular 3-satisfiability problems[J]. Journal of Computer Applications, 2024, 44(7): 2137-2143. | |
8 | ALYAHYA T N, BACHIR MENAI M EL, MATHKOUR H. On the structure of the Boolean satisfiability problem: a survey[J]. ACM Computing Surveys, 2022, 55(3): No.46. |
9 | 牛鹏飞,王晓峰,芦磊,等.随机约束满足问题相变研究综述[J].计算机工程与科学,2022,44(7):1321-1330. |
NIU P F, WANG X F, LU L, et al. Review of phase transition of random constraint satisfaction problems[J]. Computer Engineering and Science, 2022, 44(7): 1321-1330. | |
10 | 谷文祥,黄平,朱磊,等.人工智能问题中的相变现象研究[J].计算机科学,2011,38(5):1-7. |
GU W X, HUANG P, ZHU L, et al. Research of phase transition in artificial intelligence[J]. Computer Science, 2011, 38(5):1-7. | |
11 | BANERJI R B. Formal Techniques in Artificial Intelligence: a Sourcebook[M]. New York: Elsevier Science Inc., 1990:35-62. |
12 | ACHLIOPTAS D, PERES Y. The threshold for random k-SAT is 2 k log 2-O(k)[J]. Journal of the American Mathematical Society, 2004, 17(4): 947-973. |
13 | VIZEL Y, WEISSENBACHER G, MALIK S. Boolean satisfiability solvers and their applications in model checking[J]. Proceedings of the IEEE, 2015, 103(11): 2021-2035. |
14 | KSCHISCHANG F R, FREY B J, LOELIGER H A. Factor graphs and the sum-product algorithm[J]. IEEE Transactions on Information Theory, 2001, 47(2): 498-519. |
15 | ERDÖS P, RÉNYI A. On the evolution of random graphs[J]. A Matematikai Kutató Intézet Közleményei, 1960, 5(1/2): 17-60. |
16 | MONASSON R, ZECCHINA R, KIRKPATRICK S, et al. Determining computational complexity from characteristic ‘phase transitions’[J]. Nature, 1999, 400(6740): 133-137. |
17 | MITZENMACHER M, UPFAL E.概率与计算:算法与数据分析中的随机化和概率技术(原书第2版)[M].冉启康,译.北京:机械工业出版社,2020:36. |
MITZENMACHER M, UPFAL E. Probability and computing: randomized algorithms and probabilistic analysis (the 2nd edition of the original book)[M]. RAN Q K, translated. Beijing: China Machine Press, 2020: 36. | |
18 | HARDY G H, LITTLEWOOD J E, POLYA G. Inequalities, Cambridge Mathematical Library[M]. 2nd ed. Cambridge: Cambridge University Press, 1988: 43-44. |
19 | ACHLIOPTAS D, MOORE C. Random k-SAT: two moments suffice to cross a sharp threshold[J]. SIAM Journal on Computing, 2006, 36(3): 740-762. |
20 | WORMALD N C. Models of random regular graphs[M]// LAMB J D, PREECE D A. Surveys in Combinatorics, London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1999: 239-298. |
21 | GOLDBERG A. Average case complexity of the satisfiability problem[C]// Proceedings of the 4th Workshop on Automated Deduction. Berlin: Springer, 1979: 1-16. |
22 | KAUTZ H, RUAN Y, ACHLIOPTAS D, et al. Balance and filtering in structured satisfiable problems[C]// Proceedings of the 17th International Joint Conference on Artificial Intelligence: Volume 1. San Francisco: Morgan Kaufmann Publishers Inc., 2001: 351-356. |
23 | FRANCO J, PAULL M. Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem[J]. Discrete Applied Mathematics, 1983, 5(1): 77-87. |
24 | ACHLIOPTAS D, GOMES C P, KAUTZ H A, et al. Generating satisfiable problems instances[C]// Proceedings of the 17th National Conference on Artificial Intelligence / 12th Conference on Innovative Applications of Artificial Intelligence. Menlo Park, CA: AAAI Press, 2000: 256-261. |
25 | BOUFKHAD Y, DUBOIS O, INTERIAN Y, et al. Regular random k-SAT: properties of balanced formulas[J]. Journal of Automated Reasoning, 2005, 35: 181-200. |
26 | RATHI V, AURELL E, RASMUSSEN L, et al. Bounds on threshold of regular random k-SAT[C]// Proceedings of the 2010 International Conference on Theory and Applications of Satisfiability Testing, LNCS 6175. Berlin: Springer, 2010: 264-277. |
27 | JANSON S, ŁUCZAK T, RUCINSKI A. Random Graphs[M]. New York: John Wiley & Sons, Inc., 2000: 235-236. |
28 | 周锦程,许道云,卢友军,等.严格随机正则(3, s)-SAT模型及其相变现象[J].北京航空航天大学学报,2016,42(12):2563-2571. |
ZHOU J C, XU D Y, LU Y J, et al. Strictly regular random (3, s)-SAT model and its phase transition phenomenon[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2563-2571. | |
29 | 周锦程,许道云,卢友军.随机正则(k,r)-SAT问题的可满足临界[J].软件学报,2016,27(12):2985-2993. |
ZHOU J C, XU D Y, LU Y J. Satisfiability threshold of the regular random (k,r)‑SAT problem[J]. Journal of Software, 2016, 27(12): 2985-2993. | |
30 | LI W, DING Y, YANG Y, et al. Parameterized algorithms of fundamental NP-hard problems: a survey[J]. Human-Centric Computing and Information Sciences, 2020, 10: No.29. |
31 | AURELL E, GORDON U, KIRKKPATRICK S. Comparing beliefs, surveys, and random walks[C]// Proceedings of the 17th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2004: 49-56. |
32 | McALLESTER D, SELMAN B, KAUTZ H. Evidence for invariants in local search[C]// Proceedings of the14th National Conference on Artificial Intelligence / 9th Conference on Innovative Applications of Intelligence. Menlo Park, CA: AAAI Press, 1997: 321-326. |
33 | KRZ̧AKAŁA F, MONTANARI A, RICCI-TERSENGHI F, et al. Gibbs states and the set of solutions of random constraint satisfaction problems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25): 10318-10323. |
34 | MÉZARD M, RICCI-TERSENGHI F, ZECCHINA R. Two solutions to diluted p-spin models and XORSAT problems[J]. Journal of Statistical Physics, 2003, 111(3): 505-533. |
35 | MÉZARD M, MORA T, ZECCHINA R. Clustering of solutions in the random satisfiability problem[J]. Physical Review Letters, 2005, 94(19): No.197205. |
36 | MANEVA E, SINCLAIR A. On the satisfiability threshold and clustering of solutions of random 3-SAT formulas[J]. Theoretical Computer Science, 2008, 407(1/2/3): 359-369. |
37 | ACHLIOPTAS D, COJA-OGHLAN A, RICCI-TERSENGHI F. On the solution-space geometry of random constraint satisfaction problems[J]. Random Structures and Algorithms, 2011, 38(3): 251-268. |
38 | 莫孝玲,许道云.CNF公式赋值空间上可满足解的概率性质[J].计算机科学与探索,2018,12(11):1852-1861. |
MO X L, XU D Y. Probabilistic properties of satisfiable solutions on space of assignments for CNF formula[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(11): 1852-1861. | |
39 | KRISHNAMURTHY S. Exact satisfiability threshold for k‑satisfiability problems on a Bethe lattice[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 92(4): No.042144. |
40 | MONTANARI A, RICCI-TERSENGHI F, SEMERJIAN G. Clusters of solutions and replica symmetry breaking in random k‑satisfiability[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(4): No.P04004. |
41 | ACHLIOPTAS D, RICCI-TERSENGHI F. Random formulas have frozen variables[J]. SIAM Journal on Computing, 2009, 39(1): 260-280. |
42 | BAPST V, COJA-OCHLAN A. The condensation phase transition in the regular k-SAT model[EB/OL]. [2023-11-10].. |
43 | MITCHELL D, SELMAN B, LEVESQUE H. Hard and easy distributions of SAT problems[C]// Proceedings of the 10th National Conference on Artificial Intelligence. Menlo Park, CA: AAAl Press, 1992: 459-465. |
44 | MAHAJAN Y S, FU Z, MALIK S. Zchaff2004: an efficient SAT solver[C]// Proceedings of the 2004 International Conference on Theory and Applications of Satisfiability Testing, LNCS 3542. Berlin: Springer, 2005: 360-375. |
45 | KROC L, SABHARWAL A, SELMAN B. Survey propagation revisited[C]// Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2007: 217-226. |
46 | DUBOIS O, MONASSON R, SELMAN B, et al. Lower bounds for random 3-SAT via differential equations[J]. Theoretical Computer Science, 2001, 265(1/2): 159-185. |
47 | MÉZARD M, ZECCHINA R. Random K-satisfiability problem: from an analytic solution to an efficient algorithm[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 66(5): No.056126. |
48 | KAPORIS A C, KIROUSIS L M, LALAS E G. The probabilistic analysis of a greedy satisfiability algorithm[J]. Random Structures and Algorithms, 2006, 28(4): 444-480. |
49 | DÍAZ J, KIROUSIS L, MITSCHE D, et al. On the satisfiability threshold of formulas with three literals per clause[J]. Theoretical Computer Science, 2009, 410(30/31/32): 2920-2934. |
50 | DUBOIS O, BOUFKHAD Y, MANDLER J. Typical random 3‑SAT formulae and the satisfiability threshold[C]// Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: SIAM, 2000: 124-126. |
51 | KAPORIS A C, KIROUSIS L M, STAMATIOU Y C, et al. Coupon collectors, q-binomial coefficients and the unsatisfiability threshold[C]// Proceedings of the 2001 Italian Conference on Theoretical Computer Science, LNCS 2202. Berlin: Springer, 2001: 328-338. |
52 | ACHLIOPTAS D, SORKIN G B. Optimal myopic algorithms for random 3-SAT[C]// Proceedings of the 41st Annual Symposium on Foundations of Computer Science. Piscataway: IEEE, 2000: 590-600. |
53 | KAPORIS A C, KIROUSIS L M, LALAS E. Selecting complementary pairs of literals[J]. Electronic Notes in Discrete Mathematics, 2003, 16: 47-70. |
54 | FRANZ S, LEONE M. Replica bounds for optimization problems and diluted spin systems[J]. Journal of Statistical Physics, 2003, 111(3/4): 535-564. |
55 | MERTENS S, MÉZARD M, ZECCHINA R. Threshold values of random K-SAT from the cavity method[J]. Random Structures and Algorithms, 2006, 28(3): 340-373. |
56 | COJA-OGHLAN A, PANAGIOTOU K. The asymptotic k-SAT threshold[J]. Advances in Mathematics, 2016, 288: 985-1068. |
57 | ACHLIOPTAS D, CHTCHERBA A, ISTRATE G, et al. The phase transition in 1-in-k SAT and NAE 3-SAT[C]// Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete algorithms. Philadelphia, PA: SIAM, 2001: 721-722. |
58 | COJA-OGLAN A, PANAGIOTOU K. Catching the k-NAESAT threshold[C]// Proceedings of the 44th Annual ACM Symposium on Theory of Computing. New York: ACM, 2012: 899-908. |
59 | DING J, SLY A, SUN N. Satisfiability threshold for random regular NAE-SAT[J]. Communications in Mathematical Physics, 2016, 341: 435-489. |
60 | COJA-OGHLAN A. Constraint satisfaction: random regular k-SAT[M]// KRZAKALA F, RICCI-TERSENGHI F, ZDEBOROVA L, et al. Statistical Physics, Optimization, Inference, and Message-Passing Algorithms: Special Issue. Oxford: Oxford University Press, 2015: 231-252. |
61 | KNYSH S, SMELYANSKIY V N, MORRIS R D. Approximating satisfiability transition by suppressing fluctuations[EB/OL]. [2023-11-10]. . |
62 | KALAPALA V, MOORE C. The phase transition in exact cover[J]. Chicago Journal of Theoretical Computer Science, 2008, 2008: No.5. |
63 | MOORE C. The phase transition in random regular exact cover[J]. Annales de l'Institut Henri Poincaré D, 2016, 3(3): 349-362. |
64 | PANAGIOTOU K, PASCH M. Satisfiability thresholds for regular occupation problems[EB/OL]. [2023-12-05].. |
65 | DUBOIS O, DEQUEN G. A backbone-search heuristic for efficient solving of hard 3-SAT formulae[C]// Proceedings of the 17th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc, 2001: 248-253. |
66 | CASTELLANA M, ZDEBOROVÁ L. Adversarial satisfiability problem[J]. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011(3): No.P03023. |
67 | 张明明,许道云.正则3-SAT问题的相变现象[J].计算机科学,2016,43(4):33-36. |
ZHANG M M, XU D Y. Phase transition phenomenon of regular 3-SAT problem[J]. Computer Science, 2016, 43(4): 33-36. | |
68 | 周锦程,许道云,卢友军.基于1RSB 的正则(k, r)-SAT问题可满足临界[J].华中科技大学学报(自然科学版),2017,45(12):7-13. |
ZHOU J C, XU D Y, LU Y J. Satisfiability threshold of regular (k, r)-SAT problem via 1RSB theory[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(12):7-13. | |
69 | 符祖峰,许道云. d-正则(k,s)-SAT问题的NP完全性[J].软件学报,2020,31(4):1113-1123. |
FU Z F, XU D Y. NP‑completeness of d-regular (k,s)-SAT problem[J]. Journal of Software, 2020, 31(4):1113-1123. | |
70 | FU Z, XU D, WANG Y. (1,0)-super solutions of (k,s)-CNF formula[J]. Entropy, 2020, 22(2): No.253. |
71 | 王永平,许道云.取定s的严格d-正则随机(3,2s)-SAT问题的可满足临界[J].软件学报,2021,32(9):2629-2641. |
WANG Y P, XU D Y. Satisfiability threshold of strictly d-regular random(3,2s)-SAT problem for fixed s [J]. Journal of Software, 2021, 32(9): 2629-2641. | |
72 | WANG Y P, XU D Y. Satisfiability threshold of the strictly d-regular random (3, s)-SAT problem[C]// Proceedings of the 2020 International Conference on Big Data and Artificial Intelligence and Software Engineering. Piscataway: IEEE, 2020:419-424. |
[1] | Linbo HU, Zhiwei NI, Jiale CHENG, Wentao LIU, Xuhui ZHU. Collaborative crowdsourcing task allocation method fusing community detection [J]. Journal of Computer Applications, 2025, 45(2): 534-545. |
[2] | Qianting ZHANG, Liying HU, Lifei CHEN. Robust shapelet representation method for time series [J]. Journal of Computer Applications, 2025, 45(2): 436-443. |
[3] | . Design and practice of intelligent tutoring algorithm based on personalized emotional awareness [J]. Journal of Computer Applications, 0, (): 0-0. |
[4] | Quan TANG, Peng WANG, Gang XIN. Optimization algorithm entropy based on quantum dynamics [J]. Journal of Computer Applications, 2025, 45(1): 186-195. |
[5] | . YOLOv5s-MRD: an efficient fire and smoke detection algorithm for complex scenarios based on YOLOv5s [J]. Journal of Computer Applications, 0, (): 0-0. |
[6] | Yanfei WANG, Peng ZHANG, Xiangguang DAI, Huijun LI. Fixed-time time-varying algorithm applied to robot navigation problem [J]. Journal of Computer Applications, 0, (): 154-158. |
[7] | Yang CAO, Zhaoyang WU. Differential evolution algorithm based on multi-population adaptation and historically successful parameters [J]. Journal of Computer Applications, 0, (): 134-138. |
[8] | Qiye ZHANG, Xinrui ZENG. Efficient active-set method for support vector data description problem with Gaussian kernel [J]. Journal of Computer Applications, 2024, 44(12): 3808-3814. |
[9] | . Path planning of multi-UAV formation based on improved artificial potential field method [J]. Journal of Computer Applications, 0, (): 0-0. |
[10] | . Dual-population dual-stage evolutionary algorithm for complex constrained multi-objective optimization problems [J]. Journal of Computer Applications, 0, (): 0-0. |
[11] | Qin LENG, Zhengyuan MAO. Two echelon location-routing optimization considering facility sizing decision [J]. Journal of Computer Applications, 2024, 44(11): 3513-3520. |
[12] | Renke SUN, Zhiyu HUANGFU, Hu CHEN, Zhongnian LI, Xinzheng XU. Survey of neural architecture search [J]. Journal of Computer Applications, 2024, 44(10): 2983-2994. |
[13] | Antai SUN, Ye LIU, Dongmei XU. Dynamic surface asymptotic compensation algorithm for multi-agent systems [J]. Journal of Computer Applications, 2024, 44(10): 3151-3157. |
[14] | Chaoying YAN, Ziyi ZHANG, Yingnan QU, Qiuyu LI, Dixiang ZHENG, Lijun SUN. Double auction carbon trading based on consortium blockchain [J]. Journal of Computer Applications, 2024, 44(10): 3240-3245. |
[15] | . Dung beetle optimizer algorithm with restricted reverse learning and Cauchy-Gauss variation [J]. Journal of Computer Applications, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||