Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 571-577.DOI: 10.11772/j.issn.1001-9081.2024030306
• Network and communications • Previous Articles
Huahua WANG1,2, Liang HUANG1,2(), Jiajie CHEN1,2, Jiening FANG1,2
Received:
2024-03-21
Revised:
2024-04-17
Accepted:
2024-04-22
Online:
2024-05-07
Published:
2025-02-10
Contact:
Liang HUANG
About author:
WANG Huahua, born in 1981, M.S., senior engineer. His research interests include satellite communication.Supported by:
王华华1,2, 黄梁1,2(), 陈甲杰1,2, 方杰宁1,2
通讯作者:
黄梁
作者简介:
王华华(1981—),男,山西临汾人,正高级工程师,硕士,主要研究方向:卫星通信基金资助:
CLC Number:
Huahua WANG, Liang HUANG, Jiajie CHEN, Jiening FANG. Dynamic allocation algorithm for multi-beam subcarriers of low orbit satellites based on deep reinforcement learning[J]. Journal of Computer Applications, 2025, 45(2): 571-577.
王华华, 黄梁, 陈甲杰, 方杰宁. 基于深度强化学习的低轨卫星多波束子载波动态分配算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 571-577.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030306
波束半径/km | 波束半径/km | ||
---|---|---|---|
10 | 176 | 7 | 123 |
9 | 158 | 6 | 105 |
8 | 141 |
Tab. 1 Relationship between center beam radius and 3 dB angle
波束半径/km | 波束半径/km | ||
---|---|---|---|
10 | 176 | 7 | 123 |
9 | 158 | 6 | 105 |
8 | 141 |
仿真参数 | 数值 |
---|---|
用户数 | 150 |
单颗卫星波束数 | 16 |
系统带宽(B) | 500 MHz |
最大天线增益( | 26.8 dBi |
玻尔兹曼常数( | 228.6 dB |
接收机噪声温度( | 35 K |
雨量衰减( | 20 dB |
Ka频段的载波频率( | 20 GHz |
接收天线增益( | 24 dBi |
噪声功率( | -110 dBm |
仿真帧数 | 1 000 |
业务传输阈值( | 500 kbit/s |
LEO卫星轨道高度 | 1 000 Km |
LEO卫星波束天线-3 dB角度 | 10° |
Tab. 2 Simulation parameter setting
仿真参数 | 数值 |
---|---|
用户数 | 150 |
单颗卫星波束数 | 16 |
系统带宽(B) | 500 MHz |
最大天线增益( | 26.8 dBi |
玻尔兹曼常数( | 228.6 dB |
接收机噪声温度( | 35 K |
雨量衰减( | 20 dB |
Ka频段的载波频率( | 20 GHz |
接收天线增益( | 24 dBi |
噪声功率( | -110 dBm |
仿真帧数 | 1 000 |
业务传输阈值( | 500 kbit/s |
LEO卫星轨道高度 | 1 000 Km |
LEO卫星波束天线-3 dB角度 | 10° |
1 | KODHELI O, LAGUNAS E, MATURO N, et al. Satellite communications in the new space era: a survey and future challenges[J]. IEEE Communications Surveys and Tutorials, 2021, 23(1): 70-109. |
2 | EFREM C N, PANAGOPOULOS A D. Dynamic energy-efficient power allocation in multibeam satellite systems[J]. IEEE Wireless Communications Letters, 2020, 9(2): 228-231. |
3 | XIAO W, WANG R, SONG J, et al. AI-based satellite ground communication system with intelligent antenna pointing[C]// Proceedings of the 2020 IEEE Global Communications Conference. Piscataway: IEEE, 2020: 1-6. |
4 | IVARI S M, CAUS M, VAZQUEZ M A, et al. Power allocation and user clustering in multicast NOMA based satellite communication systems[C]// Proceedings of the 2020 IEEE International Conference on Communications. Piscataway: IEEE, 2020: 1-6. |
5 | CHENG N, HE J, YIN Z, et al. 6G service-oriented space-air-ground integrated network: a survey[J]. Chinese Journal of Aeronautics, 2022, 35(9): 1-18. |
6 | 别玉霞,卜瑞杰,刘海燕. 多优先级的卫星网络信道分配算法[J]. 计算机科学, 2017, 44(3):132-136, 144. |
BIE Y X, BU R J, LIU H Y. Channel allocation algorithm of multi-priority satellite network[J]. Computer Science, 2017, 44(3): 132-136, 144. | |
7 | 李新桐,张亚生. 一种适用于低轨卫星的 SDN 网络人工智能路由方法[J]. 电子测量技术, 2020, 43(22): 109-114. |
LI X T, ZHANG Y S. Artificial intelligence routing method for SDN network suitable for LEO satellites[J]. Electronic Measurement Technology, 2020, 43(22): 109-114. | |
8 | ZHOU D, SHENG M, WANG Y, et al. Machine learning-based resource allocation in satellite networks supporting internet of remote things[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6606-6621. |
9 | 段超凡,王锐. 基于智能水滴算法的卫星信道资源调度研究[J]. 现代计算机, 2022, 28(7):75-78. |
DUAN C F, WANG R. Satellite channel allocation based on the intelligent water drops algorithm[J]. Modern Computer, 2022, 28(7):75-78. | |
10 | SHUKLA I, DOZIER H R, HENSLEE A C. A study of model based and model free offline reinforcement learning[C]// Proceedings of the 2022 International Conference on Computational Science and Computational Intelligence. Piscataway: IEEE, 2022: 315-316. |
11 | LUO Z, YANG D, WANG H, et al. Weighted fair precoding based on traffic demands for multibeam satellite systems[C]// Proceedings of the 2019 IEEE 90th Vehicular Technology Conference. Piscataway: IEEE, 2019: 1-5. |
12 | GHARANJIK A, SHANKAR M R B, ARAPOGLOU P D, et al. Precoding design and user selection for multibeam satellite channels[C]// Proceedings of the IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications. Piscataway: IEEE, 2015: 420-424. |
13 | GU P, LI R, HUA C, et al. Cooperative spectrum sharing in a co-existing LEO-GEO satellite system[C]// Proceedings of the 2020 IEEE Global Communications Conference. Piscataway: IEEE, 2020: 1-6. |
14 | CHU J, CHEN X, ZHONG C, et al. Robust design for NOMA-based multibeam LEO satellite Internet of Things[J]. IEEE Internet of Things Journal, 2021, 8(3): 1959-1970. |
15 | COCCO G, ANGELONE M, PÈREZ-NEIRA A I. Co-channel interference cancelation at the user terminal in multibeam satellite systems[J]. International Journal of Satellite Communications and Networking, 2017, 35(1): 45-65. |
16 | ZHENG G, CHATZINOTAS S, OTTERSTEN B. Generic optimization of linear precoding in multibeam satellite systems[J]. IEEE Transactions on Wireless Communications, 2012, 11(6): 2308-2320. |
17 | ITU-R. Recommendation P.1853-1: tropospheric attenuation time series synthesis[EB/OL]. [2023-12-14]. !!PDF-E.pdf. |
18 | 张美蓉. 面向低轨卫星OFDM系统资源分配方法研究[D]. 南京: 南京邮电大学, 2023: 1-34. |
ZHANG M R. Research on resource allocation methods in OFDM system for LEO satellite[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023: 1-34. | |
19 | LI M. A spectrum allocation algorithm based on proportional fairness[C]// Proceedings of the 6th Global Electromagnetic Compatibility Conference. Piscataway: IEEE, 2020: 1-4. |
20 | YUAN S, SUN Y, PENG M, et al. Joint beam direction control and radio resource allocation in dynamic multi-beam LEO satellite networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 8222-8237. |
21 | SHANTHAMALLU U S, SPANIAS A. Machine and deep learning applications[M]// Machine and deep learning algorithms and applications, SLSP. Cham: Springer, 2021: 59-72. |
22 | 胡靖. D2D蜂窝通信系统中公平资源分配与调度算法研究[D]. 南京:南京邮电大学, 2017: 12-13. |
HU J. Research on fair resource allocation and scheduling algorithm in D2D communications underlay cellular network[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017: 12-13. | |
23 | ZHAO B, DONG X, REN G, et al. Optimal user pairing and power allocation in 5G satellite random access networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(6): 4085-4097. |
24 | LI Y, ZHU S, DAI J. Joint user grouping and resource allocation for LEO satellite multicast[J]. IEEE Systems Journal, 2023, 17(3): 4695-4702. |
[1] | Fang LEI, Yongcai NIU. Channel estimation method for low earth orbit satellite MIMO-OTFS system based on improved generalized orthogonal matching pursuit [J]. Journal of Computer Applications, 2024, 44(8): 2514-2520. |
[2] | Junna ZHANG, Xinxin WANG, Tianze LI, Xiaoyan ZHAO, Peiyan YUAN. Task offloading method based on dynamic service cache assistance [J]. Journal of Computer Applications, 2024, 44(5): 1493-1500. |
[3] | Xiaoyan ZHAO, Wei HAN, Junna ZHANG, Peiyan YUAN. Collaborative offloading strategy in internet of vehicles based on asynchronous deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(5): 1501-1510. |
[4] | Rui TANG, Chuanlin PANG, Ruizhi ZHANG, Chuan LIU, Shibo YUE. DDPG-based resource allocation in D2D communication-empowered cellular network [J]. Journal of Computer Applications, 2024, 44(5): 1562-1569. |
[5] | Rui TANG, Shibo YUE, Ruizhi ZHANG, Chuan LIU, Chuanlin PANG. Energy efficiency optimization mechanism for UAV-assisted and non-orthogonal multiple access-enabled data collection system [J]. Journal of Computer Applications, 2024, 44(4): 1209-1218. |
[6] | Hualiang LUO, Quanzhong LI, Qi ZHANG. Robust resource allocation optimization in cognitive wireless network integrating information communication and over-the-air computation [J]. Journal of Computer Applications, 2024, 44(4): 1195-1202. |
[7] | Fatang CHEN, Miao HUANG, Yufeng JIN. Resource allocation algorithm for low earth orbit satellites oriented to user demand [J]. Journal of Computer Applications, 2024, 44(4): 1242-1247. |
[8] | Xintong QIN, Zhengyu SONG, Tianwei HOU, Feiyue WANG, Xin SUN, Wei LI. Channel access and resource allocation algorithm for adaptive p-persistent mobile ad hoc network [J]. Journal of Computer Applications, 2024, 44(3): 863-868. |
[9] | Jiachen YU, Ye YANG. Irregular object grasping by soft robotic arm based on clipped proximal policy optimization algorithm [J]. Journal of Computer Applications, 2024, 44(11): 3629-3638. |
[10] | Yongjian MA, Xuhua SHI, Peiyao WANG. Constrained multi-objective evolutionary algorithm based on two-stage search and dynamic resource allocation [J]. Journal of Computer Applications, 2024, 44(1): 269-277. |
[11] | Lei LI, Guofu ZHANG, Zhaopin SU, Feng YUE. Software testing resource allocation algorithm for dynamic changes in architecture [J]. Journal of Computer Applications, 2023, 43(7): 2261-2270. |
[12] | Tengfei CAO, Yanliang LIU, Xiaoying WANG. Edge computing and service offloading algorithm based on improved deep reinforcement learning [J]. Journal of Computer Applications, 2023, 43(5): 1543-1550. |
[13] | Jieqin WANG, Shihyang LIN, Shiming PENG, Shuo JIA, Miaohui YANG. Hierarchical resource allocation mechanism of cooperative mobile edge computing [J]. Journal of Computer Applications, 2022, 42(8): 2501-2510. |
[14] | Yu LI, Xiping HE, Lianggui TANG. Multi-user computation offloading and resource optimization policy based on device-to-device communication [J]. Journal of Computer Applications, 2022, 42(5): 1538-1546. |
[15] | Junjie ZHANG, Runhe QIU. Joint optimization of user association and resource allocation in cognitive radio ultra-dense networks to improve genetic algorithm [J]. Journal of Computer Applications, 2022, 42(12): 3856-3862. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||