Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (3): 978-987.DOI: 10.11772/j.issn.1001-9081.2024040478
• Multimedia computing and computer simulation • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                                                                                                                    Yu LIU1,2, Pengcheng ZHANG1,2( ), Liyuan ZHANG1,2, Yi LIU1,2, Zhiguo GUI1,2, Xueyi ZHANG1,2, Chenyifei ZHU1,2, Haowei TANG1,2
), Liyuan ZHANG1,2, Yi LIU1,2, Zhiguo GUI1,2, Xueyi ZHANG1,2, Chenyifei ZHU1,2, Haowei TANG1,2
												  
						
						
						
					
				
Received:2024-04-22
															
							
																	Revised:2024-08-28
															
							
																	Accepted:2024-08-30
															
							
							
																	Online:2024-09-14
															
							
																	Published:2025-03-10
															
							
						Contact:
								Pengcheng ZHANG   
													About author:LIU Yu, born in 1999, M. S. candidate. His research interests include medical image reconstruction, medical image processing.Supported by:
        
                   
            刘宇1,2, 张鹏程1,2( ), 张丽媛1,2, 刘祎1,2, 桂志国1,2, 张雪怡1,2, 朱陈一菲1,2, 汤豪威1,2
), 张丽媛1,2, 刘祎1,2, 桂志国1,2, 张雪怡1,2, 朱陈一菲1,2, 汤豪威1,2
                  
        
        
        
        
    
通讯作者:
					张鹏程
							作者简介:刘宇(1999—),男,河北沧州人,硕士研究生,主要研究方向:医学图像重建、医学图像处理基金资助:CLC Number:
Yu LIU, Pengcheng ZHANG, Liyuan ZHANG, Yi LIU, Zhiguo GUI, Xueyi ZHANG, Chenyifei ZHU, Haowei TANG. Low-dose CT image reconstruction based on low-rank and total variation joint regularization[J]. Journal of Computer Applications, 2025, 45(3): 978-987.
刘宇, 张鹏程, 张丽媛, 刘祎, 桂志国, 张雪怡, 朱陈一菲, 汤豪威. 基于低秩与全变分联合正则化的低剂量CT图像重建[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 978-987.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040478
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 26.829 1 | 0.521 1 | 0.045 6 | 0.422 6 | 
| PWLS-LDMM | 31.155 3 | 0.787 5 | 0.027 7 | 0.565 7 | 
| NOWNUNM | 32.395 5 | 0.803 3 | 0.024 0 | 0.579 5 | 
| CP | 32.939 2 | 0.798 6 | 0.022 5 | 0.550 4 | 
| 本文方法 | 33.816 9 | 0.810 0 | 0.020 4 | 0.591 9 | 
Tab. 1 Quantitative results of LDCT image reconstruction for different examples at 25% dose on Mayo dataset
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 26.829 1 | 0.521 1 | 0.045 6 | 0.422 6 | 
| PWLS-LDMM | 31.155 3 | 0.787 5 | 0.027 7 | 0.565 7 | 
| NOWNUNM | 32.395 5 | 0.803 3 | 0.024 0 | 0.579 5 | 
| CP | 32.939 2 | 0.798 6 | 0.022 5 | 0.550 4 | 
| 本文方法 | 33.816 9 | 0.810 0 | 0.020 4 | 0.591 9 | 
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 26.482 7 | 0.521 0 | 0.047 4 | 0.437 1 | 
| PWLS-LDMM | 35.885 3 | 0.861 0 | 0.016 1 | 0.642 1 | 
| NOWNUNM | 35.681 4 | 0.870 4 | 0.016 4 | 0.639 3 | 
| CP | 35.820 7 | 0.868 8 | 0.016 2 | 0.608 6 | 
| 本文方法 | 36.574 2 | 0.886 5 | 0.014 8 | 0.682 4 | 
Tab. 2 Quantitative results of LDCT image reconstruction for different examples at 15% dose on Mayo dataset
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 26.482 7 | 0.521 0 | 0.047 4 | 0.437 1 | 
| PWLS-LDMM | 35.885 3 | 0.861 0 | 0.016 1 | 0.642 1 | 
| NOWNUNM | 35.681 4 | 0.870 4 | 0.016 4 | 0.639 3 | 
| CP | 35.820 7 | 0.868 8 | 0.016 2 | 0.608 6 | 
| 本文方法 | 36.574 2 | 0.886 5 | 0.014 8 | 0.682 4 | 
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 16.032 9 | 0.344 4 | 0.157 9 | 0.413 1 | 
| PWLS-LDMM | 32.387 2 | 0.779 9 | 0.024 0 | 0.559 1 | 
| NOWNUNM | 32.988 0 | 0.800 3 | 0.022 4 | 0.572 0 | 
| CP | 32.794 8 | 0.783 3 | 0.022 9 | 0.511 1 | 
| 本文方法 | 33.594 6 | 0.811 7 | 0.020 9 | 0.577 9 | 
Tab. 3 Quantitative results of LDCT image reconstruction for different examples at 10% dose on Mayo dataset
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 16.032 9 | 0.344 4 | 0.157 9 | 0.413 1 | 
| PWLS-LDMM | 32.387 2 | 0.779 9 | 0.024 0 | 0.559 1 | 
| NOWNUNM | 32.988 0 | 0.800 3 | 0.022 4 | 0.572 0 | 
| CP | 32.794 8 | 0.783 3 | 0.022 9 | 0.511 1 | 
| 本文方法 | 33.594 6 | 0.811 7 | 0.020 9 | 0.577 9 | 
| 方法 | 25%剂量 | 15%剂量 | 10%剂量 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | RMSE | VIF | PSNR/dB | SSIM | RMSE | VIF | PSNR/dB | SSIM | RMSE | VIF | |
| FBP | 25.206 4 | 0.523 6 | 0.054 9 | 0.368 5 | 22.703 0 | 0.445 0 | 0.073 3 | 0.331 0 | 20.585 4 | 0.383 4 | 0.093 5 | 0.298 4 | 
| PWLS-LDMM | 33.904 7 | 0.809 7 | 0.020 1 | 0.552 9 | 32.968 5 | 0.776 7 | 0.022 4 | 0.492 7 | 31.197 7 | 0.736 6 | 0.027 5 | 0.449 0 | 
| NOWNUNM | 35.127 5 | 0.855 5 | 0.017 5 | 0.655 5 | 34.237 5 | 0.827 0 | 0.019 4 | 0.562 5 | 33.410 7 | 0.799 2 | 0.021 3 | 0.499 3 | 
| CP | 33.718 0 | 0.856 8 | 0.020 6 | 0.689 7 | 33.580 0 | 0.841 6 | 0.020 9 | 0.612 5 | 33.023 4 | 0.822 0 | 0.022 3 | 0.543 1 | 
| 本文方法 | 35.509 5 | 0.864 5 | 0.016 7 | 0.709 9 | 34.289 7 | 0.850 7 | 0.019 2 | 0.640 3 | 33.716 2 | 0.837 5 | 0.020 6 | 0.584 7 | 
Tab. 4 Quantitative results of LDCT image reconstruction for same example at different doses on Mayo dataset
| 方法 | 25%剂量 | 15%剂量 | 10%剂量 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | RMSE | VIF | PSNR/dB | SSIM | RMSE | VIF | PSNR/dB | SSIM | RMSE | VIF | |
| FBP | 25.206 4 | 0.523 6 | 0.054 9 | 0.368 5 | 22.703 0 | 0.445 0 | 0.073 3 | 0.331 0 | 20.585 4 | 0.383 4 | 0.093 5 | 0.298 4 | 
| PWLS-LDMM | 33.904 7 | 0.809 7 | 0.020 1 | 0.552 9 | 32.968 5 | 0.776 7 | 0.022 4 | 0.492 7 | 31.197 7 | 0.736 6 | 0.027 5 | 0.449 0 | 
| NOWNUNM | 35.127 5 | 0.855 5 | 0.017 5 | 0.655 5 | 34.237 5 | 0.827 0 | 0.019 4 | 0.562 5 | 33.410 7 | 0.799 2 | 0.021 3 | 0.499 3 | 
| CP | 33.718 0 | 0.856 8 | 0.020 6 | 0.689 7 | 33.580 0 | 0.841 6 | 0.020 9 | 0.612 5 | 33.023 4 | 0.822 0 | 0.022 3 | 0.543 1 | 
| 本文方法 | 35.509 5 | 0.864 5 | 0.016 7 | 0.709 9 | 34.289 7 | 0.850 7 | 0.019 2 | 0.640 3 | 33.716 2 | 0.837 5 | 0.020 6 | 0.584 7 | 
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 16.237 2 | 0.316 5 | 0.154 2 | 0.432 0 | 
| PWLS-LDMM | 31.101 1 | 0.772 9 | 0.027 9 | 0.612 3 | 
| NOWNUNM | 31.349 4 | 0.779 4 | 0.027 1 | 0.675 8 | 
| CP | 31.312 9 | 0.955 1 | 0.027 2 | 0.700 5 | 
| 本文方法 | 33.989 8 | 0.957 5 | 0.020 0 | 0.738 5 | 
Tab. 5 Quantitative results of LDCT image reconstruction at 25% dose on Piglet dataset
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 16.237 2 | 0.316 5 | 0.154 2 | 0.432 0 | 
| PWLS-LDMM | 31.101 1 | 0.772 9 | 0.027 9 | 0.612 3 | 
| NOWNUNM | 31.349 4 | 0.779 4 | 0.027 1 | 0.675 8 | 
| CP | 31.312 9 | 0.955 1 | 0.027 2 | 0.700 5 | 
| 本文方法 | 33.989 8 | 0.957 5 | 0.020 0 | 0.738 5 | 
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 16.241 8 | 0.344 4 | 0.154 1 | 0.350 3 | 
| PWLS-LDMM | 31.347 4 | 0.783 1 | 0.027 1 | 0.492 9 | 
| NOWNUNM | 31.023 7 | 0.785 4 | 0.028 1 | 0.675 0 | 
| CP | 31.037 3 | 0.783 3 | 0.028 1 | 0.708 6 | 
| 本文方法 | 31.442 1 | 0.811 7 | 0.026 8 | 0.753 0 | 
Tab. 6 Quantitative results of LDCT image reconstruction at 15% dose on Piglet dataset
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 16.241 8 | 0.344 4 | 0.154 1 | 0.350 3 | 
| PWLS-LDMM | 31.347 4 | 0.783 1 | 0.027 1 | 0.492 9 | 
| NOWNUNM | 31.023 7 | 0.785 4 | 0.028 1 | 0.675 0 | 
| CP | 31.037 3 | 0.783 3 | 0.028 1 | 0.708 6 | 
| 本文方法 | 31.442 1 | 0.811 7 | 0.026 8 | 0.753 0 | 
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 14.178 3 | 0.265 6 | 0.195 5 | 0.384 8 | 
| PWLS-LDMM | 30.411 5 | 0.758 0 | 0.030 2 | 0.617 4 | 
| NOWNUNM | 30.317 2 | 0.892 4 | 0.030 5 | 0.647 7 | 
| CP | 31.894 9 | 0.959 4 | 0.025 4 | 0.684 2 | 
| 本文方法 | 32.520 8 | 0.960 5 | 0.023 7 | 0.696 7 | 
Tab. 7 Quantitative results of LDCT image reconstruction at 10% dose on Piglet dataset
| 方法 | PSNR/dB | SSIM | RMSE | VIF | 
|---|---|---|---|---|
| FBP | 14.178 3 | 0.265 6 | 0.195 5 | 0.384 8 | 
| PWLS-LDMM | 30.411 5 | 0.758 0 | 0.030 2 | 0.617 4 | 
| NOWNUNM | 30.317 2 | 0.892 4 | 0.030 5 | 0.647 7 | 
| CP | 31.894 9 | 0.959 4 | 0.025 4 | 0.684 2 | 
| 本文方法 | 32.520 8 | 0.960 5 | 0.023 7 | 0.696 7 | 
| 1 | BRENNER D J, HALL E J. Computed tomography — an increasing source of radiation exposure[J]. The New England Journal of Medicine, 2007, 357(22): 2277-2284. | 
| 2 | OTHMAN A E, BONGERS M N, ZINSSER D, et al. Evaluation of reduced-dose CT for acute non-traumatic abdominal pain: evaluation of diagnostic accuracy in comparison to standard-dose CT[J]. Acta Radiologica, 2018, 59(1): 4-12. | 
| 3 | HSIEH J. Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise[J]. Medical Physics, 1998, 25(11): 2139-2147. | 
| 4 | TAMURA A, MUKAIDA E, OTA Y, et al. Superior objective and subjective image quality of deep learning reconstruction for low-dose abdominal CT imaging in comparison with model-based iterative reconstruction and filtered back projection[J]. British Journal of Radiology, 2021, 94(1123): No.20201357. | 
| 5 | 侯瑞峰, 张鹏程,张丽媛,等. 基于全变分正则项展开的迭代去噪网络[J]. 计算机应用, 2024, 44(3): 916-921. | 
| HOU R F, ZHANG P C, ZHANG L Y, et al. Iterative denoising network based on total variation regular term expansion[J]. Journal of Computer Applications, 2024, 44(3): 916-921. | |
| 6 | ZHANG Y, ZHANG J, LU H. Statistical sinogram smoothing for low-dose CT with segmentation-based adaptive filtering[J]. IEEE Transactions on Nuclear Science, 2010, 57(5): 2587-2598. | 
| 7 | GORDON R, BENDER R, HERMAN G T. Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481. | 
| 8 | ANDERSEN A H, KAK A C. Simultaneous Algebraic Reconstruction Technique (SART): a superior implementation of the ART algorithm[J]. Ultrasonic Imaging, 1984, 6(1): 81-94. | 
| 9 | DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1-22. | 
| 10 | PICKHARDT P J, LUBNER M G, KIM D H, et al. Abdominal CT with Model-Based Iterative Reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging[J]. American Journal of Roentgenology, 2012, 199(6): 1266-1274. | 
| 11 | LU S, YANG B, XIAO Y, et al. Iterative reconstruction of low-dose CT based on differential sparse[J]. Biomedical Signal Processing and Control, 2023, 79(Pt B): No.104204. | 
| 12 | GEYER L L, SCHOEPF U J, MEINEL F G, et al. State of the art: iterative CT reconstruction techniques[J]. Radiology, 2015, 276(2): 339-357. | 
| 13 | WANG F, WANG R, QIU H. Low-dose CT reconstruction using dataset-free learning [J]. PLoS ONE, 2024, 19(6): No.e0304738. | 
| 14 | LIU Y, MA J, FAN Y, et al. Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction[J]. Physics in Medicine and Biology, 2012, 57(23): No.7923. | 
| 15 | HUANG Y, TAUBMANN O, HUANG X, et al. A new weighted anisotropic total variation algorithm for limited angle tomography[C]// Proceedings of the IEEE 13th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2016: 585-588. | 
| 16 | XI Y, ZHOU P, YU H, et al. Adaptive-weighted high order TV algorithm for sparse-view CT reconstruction[J]. Medical Physics, 2023, 50(9): 5568-5584. | 
| 17 | SIDKY E Y, PAN X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Physics in Medicine and Biology, 2008, 53(17): No.4777. | 
| 18 | ZHANG Y, YANG K, ZHU Y, et al. NOWNUNM: nonlocal weighted nuclear norm minimization for sparse-sampling CT reconstruction[J]. IEEE Access, 2018, 6: 73370-73379. | 
| 19 | ZHANG Y, ZENG D, BIAN Z, et al. Weighted tensor low-rankness and learnable analysis sparse representation model for texture preserving low-dose CT reconstruction[J]. IEEE Transactions on Computational Imaging, 2021, 7: 321-336. | 
| 20 | KIM K, YE J C, WORSTELL W, et al. Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty[J]. IEEE Transactions on Medical Imaging, 2015, 34(3): 748-760. | 
| 21 | YANG K, XIA W, BAO P, et al. Nonlocal weighted nuclear norm minimization based sparse-sampling CT image reconstruction[C]// Proceedings of the IEEE 16th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2019: 1700-1703. | 
| 22 | SHEN Y, SUN S, XU F, et al. CT image reconstruction via nonlocal low-rank regularization and data-driven tight frame[J]. Symmetry, 2021, 13(10): No.1873. | 
| 23 | HE Y, ZENG L, XU Q, et al. Spectral CT reconstruction via low-rank representation and structure preserving regularization[J]. Physics in Medicine and Biology, 2023, 68(2): No.025011. | 
| 24 | WANG S, XIA K, WANG L, et al. Low-rank matrix factorization with nonconvex regularization and bilinear decomposition[J]. Signal Processing, 2022, 201: No.108694. | 
| 25 | FAZEL M, HINDI H, BOYD S P. A rank minimization heuristic with application to minimum order system approximation[C]// Proceedings of the 2001 American Control Conference — Volume 6. Piscataway: IEEE, 2001: 4734-4739. | 
| 26 | CANDÈS E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): No.11. | 
| 27 | YAO J, XU Z, HUANG X, et al. An efficient algorithm for dynamic MRI using low-rank and total variation regularizations[J]. Medical Image Analysis, 2018, 44: 14-27. | 
| 28 | LIN Z, CHEN M, MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL]. [2024-08-29].. | 
| 29 | 王心,朱浩华,刘光灿. 卷积鲁棒主成分分析[J]. 计算机应用, 2021, 41(5): 1314-1318. | 
| WANG X, ZHU H H, LIU G C. Convolution robust principal component analysis[J]. Journal of Computer Applications, 2021, 41(5): 1314-1318. | |
| 30 | POCK T, CHAMBOLLE A. Diagonal preconditioning for first order primal-dual algorithms in convex optimization[C]// Proceedings of the 2011 International Conference on Computer Vision. Piscataway: IEEE, 2011: 1762-1769. | 
| 31 | CHAMBOLLE A, POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. Journal of Mathematical Imaging and Vision, 2011, 40: 120-145. | 
| 32 | SIDKY E Y, JØRGENSEN J H, PAN X. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm[J]. Physics in Medicine and Biology, 2012, 57(10): No.3065. | 
| 33 | 席雅睿,乔志伟,温静,等. 基于Chambolle-Pock算法框架的高阶TV图像重建算法[J]. 计算机应用, 2020, 40(6): 1793-1798. | 
| XI Y R, QIAO Z W, WEN J, et al. High order TV image reconstruction algorithm based on Chambolle-Pock algorithm framework[J]. Journal of Computer Applications, 2020, 40(6): 1793-1798. | |
| 34 | BAO P, ZHOU J, ZHANG Y. Few-view CT reconstruction with group sparsity regularization[J]. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34(9): No.e3101. | 
| 35 | ROCKAFELLAR R T. Convex analysis[M]. Princeton, NJ: Princeton University Press, 1997. | 
| 36 | COMBETTES P L, PESQUET J C. Proximal thresholding algorithm for minimization over orthonormal bases[J]. SIAM Journal on Optimization, 2008, 18(4): 1351-1376. | 
| 37 | CAI J F, CANDÈS E J, SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. | 
| 38 | 牛善洲,梁礼境,李硕,等. 基于低维流形先验的低剂量CT重建方法[J]. 计算机工程与应用, 2023, 59(18): 242-248. | 
| NIU S Z, LIANG L J, LI S, et al. Low-dose CT reconstruction using low-dimensional manifold prior[J]. Computer Engineering and Applications, 2023, 59(18): 242-248. | |
| 39 | SHEIKH H R, BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444. | 
| 40 | MOEN T R, CHEN B, HOLMES D R, Ⅲ, et al. Low-dose CT image and projection dataset[J]. Medical Physics, 2021, 48(2): 902-911. | 
| 41 | XIA W, LU Z, HUANG Y, et al. MAGIC: manifold and graph integrative convolutional network for low-dose CT reconstruction[J]. IEEE Transactions on Medical Imaging, 2021, 40(12): 3459-3472. | 
| [1] | Hong SHANGGUAN, Huiying REN, Xiong ZHANG, Xinglong HAN, Zhiguo GUI, Yanling WANG. Low-dose CT denoising model based on dual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2025, 45(2): 624-632. | 
| [2] | Hualu QIU, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI. Reconstruction algorithm for undersampled magnetic resonance images based on complex convolution dual-domain cascade network [J]. Journal of Computer Applications, 2024, 44(2): 580-587. | 
| [3] | Yusheng LIU, Xuezhong XIAO. High-fidelity image editing based on fine-tuning of diffusion model [J]. Journal of Computer Applications, 2024, 44(11): 3574-3580. | 
| [4] | Zezhi ZENG, Jianwei YANG. Generalized polar complex exponential transform with more uniform zeros distribution [J]. Journal of Computer Applications, 2023, 43(8): 2499-2504. | 
| [5] | Xiaoyu FAN, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI. Reconstruction algorithm for highly undersampled magnetic resonance images based on residual graph convolutional neural network [J]. Journal of Computer Applications, 2023, 43(4): 1261-1268. | 
| [6] | Peng WANG, Dawei ZHANG, Zhengjun LU, Linhao LI. Moving object detection based on reliability low-rank factorization and generalized diversity difference [J]. Journal of Computer Applications, 2023, 43(2): 514-520. | 
| [7] | Qize REN, Hongjie JIA, Dongyu CHEN. Large-scale subspace clustering algorithm with Local structure learning [J]. Journal of Computer Applications, 2023, 43(12): 3747-3754. | 
| [8] | Zefang HAN, Xiong ZHANG, Hong SHANGGUAN, Xinglong HAN, Jing HAN, Gang FENG, Xueying CUI. Artifacts sensing generative adversarial network for low-dose CT denoising [J]. Journal of Computer Applications, 2022, 42(7): 2301-2310. | 
| [9] | Kunpeng LI, Pengcheng ZHANG, Hong SHANGGUAN, Yanling WANG, Jie YANG, Zhiguo GUI. Time-frequency domain CT reconstruction algorithm based on convolutional neural network [J]. Journal of Computer Applications, 2022, 42(4): 1308-1316. | 
| [10] | Leping LIN, Hongmin ZHOU, Ning OUYANG. Compressed sensing image reconstruction method fusing spatial location and structure information [J]. Journal of Computer Applications, 2022, 42(3): 930-937. | 
| [11] | Lili FAN, Guifu LU, Ganyi TANG, Dan YANG. Low-rank representation subspace clustering method based on Hessian regularization and non-negative constraint [J]. Journal of Computer Applications, 2022, 42(1): 115-122. | 
| [12] | YAN Haisheng, MA Xinqiang. Feature construction algorithm for multi-target regression via radial basis function [J]. Journal of Computer Applications, 2021, 41(8): 2219-2224. | 
| [13] | LI Xingfeng, HUANG Yuqing, REN Zhenwen, LI Yihong. Robust multi-view clustering algorithm based on adaptive neighborhood [J]. Journal of Computer Applications, 2021, 41(4): 1093-1099. | 
| [14] | JIANG Li, HUANG Shijian, YAN Wenjuan. Human action recognition method based on low-rank action information and multi-scale convolutional neural network [J]. Journal of Computer Applications, 2021, 41(3): 721-726. | 
| [15] | Chenyu GE, Liang DONG, Yikun XU, Yi CHANG, Hongming ZHANG. Global-scale radar data restoration algorithm based on total variation and low-rank group sparsity [J]. Journal of Computer Applications, 2021, 41(11): 3353-3361. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||