Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (10): 3371-3380.DOI: 10.11772/j.issn.1001-9081.2024101442
• Frontier and comprehensive applications • Previous Articles
Yiming WANG1, Shiyuan LI1, Nanqing LIAO2, Qingfeng CHEN1()
Received:
2024-10-11
Revised:
2024-12-30
Accepted:
2024-12-31
Online:
2025-01-06
Published:
2025-10-10
Contact:
Qingfeng CHEN
About author:
WANG Yiming, born in 2000, M. S. candidate. His research interests include medical image processing, trustworthy machine learning, data mining.Supported by:
通讯作者:
陈庆锋
作者简介:
王一铭(2000—),男,广西南宁人,硕士研究生,主要研究方向:医学图像处理、可信机器学习、数据挖掘基金资助:
CLC Number:
Yiming WANG, Shiyuan LI, Nanqing LIAO, Qingfeng CHEN. Uncertainty-aware unsupervised medical image registration model based on evidential deep learning[J]. Journal of Computer Applications, 2025, 45(10): 3371-3380.
王一铭, 李世源, 廖南清, 陈庆锋. 基于证据深度学习的不确定性感知无监督医学图像配准模型[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3371-3380.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024101442
模型 | 海马体 | LPBA40 | IBSR18 | ||||||
---|---|---|---|---|---|---|---|---|---|
DSC | NCC | MSE | DSC | NCC | MSE | DSC | NCC | MSE | |
集成 | 0.745 | 0.889 | 0.004 44 | 0.570 | 0.904 | 0.002 27 | 0.820 | 0.903 | 0.005 40 |
MC dropout | 0.707 | 0.878 | 0.005 08 | 0.532 | 0.890 | 0.001 80 | 0.497 | 0.887 | 0.006 69 |
Snapshot | 0.746 | 0.823 | 0.010 19 | 0.561 | 0.870 | 0.007 16 | 0.783 | 0.784 | 0.021 51 |
CCI | 0.751 | 0.889 | 0.004 07 | 0.576 | 0.905 | 0.001 80 | 0.825 | 0.903 | 0.005 31 |
DP | 0.737 | 0.888 | 0.004 52 | 0.569 | 0.895 | 0.001 77 | 0.802 | 0.898 | 0.005 66 |
CLMorph | 0.752 | 0.890 | 0.004 35 | 0.605 | 0.906 | 0.001 92 | 0.827 | 0.910 | 0.003 52 |
MNDVF | 0.746 | 0.886 | 0.005 14 | 0.572 | 0.903 | 0.002 35 | 0.821 | 0.902 | 0.005 37 |
EvidentialMorph | 0.754 | 0.891 | 0.004 06 | 0.625 | 0.912 | 0.001 72 | 0.843 | 0.935 | 0.002 31 |
Tab. 1 Comparison of unsupervised registration performance of different models
模型 | 海马体 | LPBA40 | IBSR18 | ||||||
---|---|---|---|---|---|---|---|---|---|
DSC | NCC | MSE | DSC | NCC | MSE | DSC | NCC | MSE | |
集成 | 0.745 | 0.889 | 0.004 44 | 0.570 | 0.904 | 0.002 27 | 0.820 | 0.903 | 0.005 40 |
MC dropout | 0.707 | 0.878 | 0.005 08 | 0.532 | 0.890 | 0.001 80 | 0.497 | 0.887 | 0.006 69 |
Snapshot | 0.746 | 0.823 | 0.010 19 | 0.561 | 0.870 | 0.007 16 | 0.783 | 0.784 | 0.021 51 |
CCI | 0.751 | 0.889 | 0.004 07 | 0.576 | 0.905 | 0.001 80 | 0.825 | 0.903 | 0.005 31 |
DP | 0.737 | 0.888 | 0.004 52 | 0.569 | 0.895 | 0.001 77 | 0.802 | 0.898 | 0.005 66 |
CLMorph | 0.752 | 0.890 | 0.004 35 | 0.605 | 0.906 | 0.001 92 | 0.827 | 0.910 | 0.003 52 |
MNDVF | 0.746 | 0.886 | 0.005 14 | 0.572 | 0.903 | 0.002 35 | 0.821 | 0.902 | 0.005 37 |
EvidentialMorph | 0.754 | 0.891 | 0.004 06 | 0.625 | 0.912 | 0.001 72 | 0.843 | 0.935 | 0.002 31 |
模型 | 海马体 | LPBA40 | IBSR18 | ||||||
---|---|---|---|---|---|---|---|---|---|
DSC | NCC | MSE | DSC | NCC | MSE | DSC | NCC | MSE | |
集成 | 0.746 | 0.889 | 0.004 46 | 0.573 | 0.905 | 0.002 52 | 0.826 | 0.903 | 0.005 28 |
MC dropout | 0.708 | 0.881 | 0.004 34 | 0.534 | 0.890 | 0.002 97 | 0.502 | 0.892 | 0.006 57 |
Snapshot | 0.753 | 0.821 | 0.009 36 | 0.569 | 0.855 | 0.007 96 | 0.783 | 0.784 | 0.021 13 |
CCI | 0.751 | 0.891 | 0.003 92 | 0.582 | 0.905 | 0.002 43 | 0.828 | 0.904 | 0.005 21 |
DP | 0.740 | 0.889 | 0.004 47 | 0.570 | 0.901 | 0.003 08 | 0.803 | 0.901 | 0.005 41 |
CLMorph | 0.758 | 0.892 | 0.004 06 | 0.607 | 0.910 | 0.002 02 | 0.830 | 0.912 | 0.003 32 |
MNDVF | 0.746 | 0.889 | 0.004 78 | 0.574 | 0.907 | 0.002 61 | 0.822 | 0.902 | 0.005 28 |
EvidentialMorph | 0.763 | 0.895 | 0.003 79 | 0.627 | 0.929 | 0.001 38 | 0.846 | 0.936 | 0.002 19 |
Tab. 2 Comparison of semi-supervised registration performance of different models
模型 | 海马体 | LPBA40 | IBSR18 | ||||||
---|---|---|---|---|---|---|---|---|---|
DSC | NCC | MSE | DSC | NCC | MSE | DSC | NCC | MSE | |
集成 | 0.746 | 0.889 | 0.004 46 | 0.573 | 0.905 | 0.002 52 | 0.826 | 0.903 | 0.005 28 |
MC dropout | 0.708 | 0.881 | 0.004 34 | 0.534 | 0.890 | 0.002 97 | 0.502 | 0.892 | 0.006 57 |
Snapshot | 0.753 | 0.821 | 0.009 36 | 0.569 | 0.855 | 0.007 96 | 0.783 | 0.784 | 0.021 13 |
CCI | 0.751 | 0.891 | 0.003 92 | 0.582 | 0.905 | 0.002 43 | 0.828 | 0.904 | 0.005 21 |
DP | 0.740 | 0.889 | 0.004 47 | 0.570 | 0.901 | 0.003 08 | 0.803 | 0.901 | 0.005 41 |
CLMorph | 0.758 | 0.892 | 0.004 06 | 0.607 | 0.910 | 0.002 02 | 0.830 | 0.912 | 0.003 32 |
MNDVF | 0.746 | 0.889 | 0.004 78 | 0.574 | 0.907 | 0.002 61 | 0.822 | 0.902 | 0.005 28 |
EvidentialMorph | 0.763 | 0.895 | 0.003 79 | 0.627 | 0.929 | 0.001 38 | 0.846 | 0.936 | 0.002 19 |
模型 | GPU | CPU | ||
---|---|---|---|---|
采样数 | 推理时耗/s | 采样数 | 推理时耗/s | |
集成 | 2 | 0.052 0 | 2 | 0.279 |
5 | 0.130 6 | 5 | 0.721 | |
10 | 0.261 1 | 10 | 1.457 | |
MC dropout | 2 | 0.019 2 | 2 | 0.302 |
5 | 0.038 9 | 5 | 0.682 | |
10 | 0.088 2 | 10 | 1.321 | |
Snapshot | 2 | 0.020 9 | 2 | 0.318 |
5 | 0.059 4 | 5 | 0.707 | |
10 | 0.108 0 | 10 | 1.465 | |
CCI | — | 0.022 8 | — | 0.333 |
DP | 2 | 0.023 9 | 2 | 0.298 |
5 | 0.052 8 | 5 | 0.685 | |
10 | 0.097 9 | 10 | 1.432 | |
CLMorph | — | 0.021 4 | — | 0.297 |
MNDVF | — | 0.030 1 | — | 0.366 |
EvidentialMorph | — | 0.016 5 | — | 0.212 |
Tab. 3 Comparison of inference time of different models
模型 | GPU | CPU | ||
---|---|---|---|---|
采样数 | 推理时耗/s | 采样数 | 推理时耗/s | |
集成 | 2 | 0.052 0 | 2 | 0.279 |
5 | 0.130 6 | 5 | 0.721 | |
10 | 0.261 1 | 10 | 1.457 | |
MC dropout | 2 | 0.019 2 | 2 | 0.302 |
5 | 0.038 9 | 5 | 0.682 | |
10 | 0.088 2 | 10 | 1.321 | |
Snapshot | 2 | 0.020 9 | 2 | 0.318 |
5 | 0.059 4 | 5 | 0.707 | |
10 | 0.108 0 | 10 | 1.465 | |
CCI | — | 0.022 8 | — | 0.333 |
DP | 2 | 0.023 9 | 2 | 0.298 |
5 | 0.052 8 | 5 | 0.685 | |
10 | 0.097 9 | 10 | 1.432 | |
CLMorph | — | 0.021 4 | — | 0.297 |
MNDVF | — | 0.030 1 | — | 0.366 |
EvidentialMorph | — | 0.016 5 | — | 0.212 |
模型 | 无监督配准 | 半监督配准 | ||||
---|---|---|---|---|---|---|
DSC | NCC | MSE | DSC | NCC | MSE | |
w/o Evidential | 0.569 | 0.904 | 0.001 87 | 0.572 | 0.905 | 0.003 12 |
w/o LESIM | 0.578 | 0.891 | 0.002 95 | 0.617 | 0.893 | 0.002 33 |
w/o STN | 0.102 | 0.173 | 0.169 15 | 0.103 | 0.231 | 0.167 81 |
EvidentialMorph | 0.625 | 0.912 | 0.001 72 | 0.627 | 0.929 | 0.001 38 |
Tab. 4 Ablation experimental results of unsupervised registration and semi-supervised registration
模型 | 无监督配准 | 半监督配准 | ||||
---|---|---|---|---|---|---|
DSC | NCC | MSE | DSC | NCC | MSE | |
w/o Evidential | 0.569 | 0.904 | 0.001 87 | 0.572 | 0.905 | 0.003 12 |
w/o LESIM | 0.578 | 0.891 | 0.002 95 | 0.617 | 0.893 | 0.002 33 |
w/o STN | 0.102 | 0.173 | 0.169 15 | 0.103 | 0.231 | 0.167 81 |
EvidentialMorph | 0.625 | 0.912 | 0.001 72 | 0.627 | 0.929 | 0.001 38 |
[1] | FU Y, LEI Y, WANG T, et al. Deep learning in medical image registration: a review[J]. Physics in Medicine and Biology, 2020, 65(20): No.20TR01. |
[2] | BIERBRIER J, GUEZIRI H E, COLLINS D L. Estimating medical image registration error and confidence: a taxonomy and scoping review[J]. Medical Image Analysis, 2022, 81: No.102531. |
[3] | CHEN J, LIU Y, WEI S, et al. A survey on deep learning in medical image registration: new technologies, uncertainty, evaluation metrics, and beyond[J]. Medical Image Analysis, 2025, 100: No.103385. |
[4] | DALCA A V, BALAKRISHNAN G, GUTTAG J, et al. Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces[J]. Medical Image Analysis, 2019, 57: 226-236. |
[5] | KHAWALED S, FREIMAN M. Unsupervised deep-learning based deformable image registration: a Bayesian framework[EB/OL]. [2024-12-25].. |
[6] | LUO J, SEDGHI A, POPURI K, et al. On the applicability of registration uncertainty[C]// Proceedings of the 2019 Medical Image Computing and Computer-Assisted Intervention, LNCS 11765. Cham: Springer, 2019: 410-419. |
[7] | LUO J, FRISKEN S, WANG D, et al. Are registration uncertainty and error monotonically associated?[C]// Proceedings of the 2020 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12263. Cham: Springer, 2020: 264-274. |
[8] | GONG X, KHAIDEM L, ZHU W, et al. Uncertainty learning towards unsupervised deformable medical image registration[C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1555-1564. |
[9] | KREBS J, MANSI T, DELINGETTE H, et al. Robust non-rigid registration through agent-based action learning[C]// Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10433. Cham: Springer, 2017: 344-352. |
[10] | EPPENHOF K A J, LAFARGE M W, MOESKOPS P, et al. Deformable image registration using convolutional neural networks[C]// Proceedings of the SPIE 10574, Medical Imaging 2018: Image Processing. Bellingham, WA: SPIE, 2018: No.105740S. |
[11] | LIU Z, CHEN Q, LAN W, et al. SSLDTI: a novel method for drug-target interaction prediction based on self-supervised learning[J]. Artificial Intelligence in Medicine, 2024, 149: No.102778. |
[12] | BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. An unsupervised learning model for deformable medical image registration[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 9252-9260. |
[13] | BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: a learning framework for deformable medical image registration[J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1788-1800. |
[14] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
[15] | JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial Transformer networks[C]// Proceedings of the 29th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2015: 2017-2025. |
[16] | HOOPES A, HOFFMANN M, FISCHL B, et al. HyperMorph: amortized hyperparameter learning for image registration[C]// Proceedings of the 2021 International Conference on Information Processing in Medical Imaging, LNCS 12729. Cham: Springer, 2021: 3-17. |
[17] | HOFFMANN M, BILLOT B, GREVE D N, et al. SynthMorph: learning contrast-invariant registration without acquired images[J]. IEEE Transactions on Medical Imaging, 2022, 41(3): 543-558. |
[18] | KIM B, KIM D H, PARK S H, et al. CycleMorph: cycle consistent unsupervised deformable image registration[J]. Medical Image Analysis, 2021, 71: No.102036. |
[19] | CHEN J, FREY E C, HE Y, et al. TransMorph: Transformer for unsupervised medical image registration[J]. Medical Image Analysis, 2022, 82: No.102615. |
[20] | 蒋宏贵,胡冀苏,钱旭升,等. 基于联合学习和多级小波金字塔的MRI-TRUS图像配准方法[J/OL]. 计算机工程 [2024-12-25].. |
JIANG H G, HU J S, QIAN X S, et al. Registration method of MRI-TRUS images based on joint learning and multi-level wavelet pyramid[J/OL]. Computer Engineering [2024-12-25].. | |
[21] | GAWLIKOWSKI J, TASSI C R N, ALI M, et al. A survey of uncertainty in deep neural networks[J]. Artificial Intelligence Review, 2023, 56(S1): 1513-1589. |
[22] | ZOU K, CHEN Z, YUAN X, et al. A review of uncertainty estimation and its application in medical imaging[J]. Meta-Radiology, 2023, 1(1): No.100003. |
[23] | BLUNDELL C, CORNEBISE J, KAVUKCUOGLU K, et al. Weight uncertainty in neural network[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 1613-1622. |
[24] | KINGMA D P, SALIMANS T, WELLING M. Variational dropout and the local reparameterization trick[C]// Proceedings of the 29th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2015: 2575-2583. |
[25] | GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1050-1059. |
[26] | BISHOP C M. Pattern recognition and machine learning[M]. New York: Springer, 2006. |
[27] | LAKSHMINARAYANAN B, PRITZEL A, BLUNDELL C. Simple and scalable predictive uncertainty estimation using deep ensembles[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6405-6416. |
[28] | WANG G, LI W, AERTSEN M, et al. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks[J]. Neurocomputing, 2019, 338: 34-45. |
[29] | AYHAN M S, BERENS P. Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks[EB/OL]. [2024-09-11].. |
[30] | SENSOY M, KAPLAN L, KANDEMIR M. Evidential deep learning to quantify classification uncertainty[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 3183-3193. |
[31] | AMINI A, SCHWARTING W, SOLEIMANY A, et al. Deep evidential regression[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 14927-14937. |
[32] | LI S, CHEN Q, LIU Z, et al. Bi-SGTAR: a simple yet efficient model for circRNA-disease association prediction based on known association pair only[J]. Knowledge-Based Systems, 2024, 291: No.111622. |
[33] | SUDARSHAN V P, UPADHYAY U, EGAN G F, et al. Towards lower-dose PET using physics-based uncertainty-aware multimodal learning with robustness to out-of-distribution data[J]. Medical Image Analysis, 2021, 73: No.102187. |
[34] | XU Z, LUO J, LU D, et al. Double-uncertainty guided spatial and temporal consistency regularization weighting for learning-based abdominal registration[C]// Proceedings of the 2022 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 13436. Cham: Springer, 2022: 14-24. |
[35] | KWON Y, WON J H, KIM B J, et al. Uncertainty quantification using Bayesian neural networks in classification: application to biomedical image segmentation[J]. Computational Statistics and Data Analysis, 2020, 142: No.106816. |
[36] | RUAN Y, LI D, MARSHALL H, et al. Mt-UcGAN: multi-task uncertainty-constrained GAN for joint segmentation, quantification and uncertainty estimation of renal tumors on CT[C]// Proceedings of the 2020 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12264. Cham: Springer, 2020: 439-449. |
[37] | CAO X, CHEN H, LI Y, et al. Uncertainty aware temporal-ensembling model for semi-supervised ABUS mass segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(1): 431-443. |
[38] | LINMANS J, ELFWING S, VAN DER LAAK J, et al. Predictive uncertainty estimation for out-of-distribution detection in digital pathology[J]. Medical Image Analysis, 2023, 83: No.102655. |
[39] | FENG M, XU K, WU N, et al. Trusted multi-scale classification framework for whole slide image[J]. Biomedical Signal Processing and Control, 2024, 89: No.105790. |
[40] | ZOU K, YUAN X, SHEN X, et al. TBraTS: trusted brain tumor segmentation[C]// Proceedings of the 2022 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 13438. Cham: Springer, 2022: 503-513. |
[41] | LI S, LIU Y, CHEN Q, et al. Noise-resilient unsupervised graph representation learning via multi-hop feature quality estimation[C]// Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. New York: ACM, 2024: 1255-1265. |
[42] | SIMPSON A L, ANTONELLI M, BAKAS S, et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms[EB/OL]. [2024-12-25].. |
[43] | SHATTUCK D W, MIRZA M, ADISETIYO V, et al. Construction of a 3D probabilistic atlas of human cortical structures[J]. NeuroImage, 2008, 39(3): 1064-1080. |
[44] | NeuroImaging Tools and Resources Collaboratory (NITRC). Internet Brain Segmentation Repository (IBSR)[DS/OL]. [2024-12-25].. |
[45] | HUANG G, LI Y, PLEISS G, et al. Snapshot ensembles: train 1, get M for free[EB/OL]. [2024-12-25].. |
[46] | VAN HARTEN L D, STOKER J, IŠGUM I. Robust deformable image registration using cycle-consistent implicit representations[J]. IEEE Transactions on Medical Imaging, 2024, 43(2): 784-793. |
[47] | ZHOU Z, YIN P, LIU Y, et al. Uncertain prediction of deformable image registration on lung CT using multi-category features and supervised learning[J]. Medical and Biological Engineering and Computing, 2024, 62(9): 2669-2686. |
[48] | LIU L, AVILES-RIVERO A I, SCHÖNLIEB C B. Contrastive registration for unsupervised medical image segmentation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(1): 147-159. |
[49] | RIVETTI L, STUDEN A, SHARMA M, et al. Uncertainty estimation and evaluation of deformation image registration based convolutional neural networks[J]. Physics in Medicine and Biology, 2024, 69(11): No.115045. |
[1] | Ying HUANG, Shengmei GAO, Guang CHEN, Su LIU. Low-light image enhancement network combining signal-to-noise ratio guided dual-branch structure and histogram equalization [J]. Journal of Computer Applications, 2025, 45(6): 1971-1979. |
[2] | Yulin HE, Xu LI, Yingting HE, Laizhong CUI, Zhexue HUANG. Subspace Gaussian mixture model clustering ensemble algorithm based on maximum mean discrepancy [J]. Journal of Computer Applications, 2025, 45(6): 1712-1723. |
[3] | Wenpeng WANG, Yinchang QIN, Wenxuan SHI. Review of unsupervised deep learning methods for industrial defect detection [J]. Journal of Computer Applications, 2025, 45(5): 1658-1670. |
[4] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
[5] | Junxiu AN, Linwang YANG, Yuan LIU. Unsupervised text style transfer based on semantic perception of proximity [J]. Journal of Computer Applications, 2025, 45(4): 1139-1147. |
[6] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[7] | Yan ZHOU, Yang LI. Rectified cross pseudo supervision method with attention mechanism for stroke lesion segmentation [J]. Journal of Computer Applications, 2024, 44(6): 1942-1948. |
[8] | Xiawuji, Heming HUANG, Gengzangcuomao, Yutao FAN. Survey of extractive text summarization based on unsupervised learning and supervised learning [J]. Journal of Computer Applications, 2024, 44(4): 1035-1048. |
[9] | Rui JIANG, Wei LIU, Cheng CHEN, Tao LU. Asymmetric unsupervised end-to-end image deraining network [J]. Journal of Computer Applications, 2024, 44(3): 922-930. |
[10] | Pei ZHAO, Yan QIAO, Rongyao HU, Xinyu YUAN, Minyue LI, Benchu ZHANG. Multivariate time series anomaly detection based on multi-domain feature extraction [J]. Journal of Computer Applications, 2024, 44(11): 3419-3426. |
[11] | Nengbing HU, Biao CAI, Xu LI, Danhua CAO. Graph classification method based on graph pooling contrast learning [J]. Journal of Computer Applications, 2024, 44(11): 3327-3334. |
[12] | Menglin HUANG, Lei DUAN, Yuanhao ZHANG, Peiyan WANG, Renhao LI. Prompt learning based unsupervised relation extraction model [J]. Journal of Computer Applications, 2023, 43(7): 2010-2016. |
[13] | Zhe XU, Zhihong WANG, Cunyu SHAN, Yaru SUN, Ying YANG. Unsupervised face forgery video detection based on reconstruction error [J]. Journal of Computer Applications, 2023, 43(5): 1571-1577. |
[14] | Mengting GE, Minghua WAN. Feature extraction model based on neighbor supervised locally invariant robust principal component analysis [J]. Journal of Computer Applications, 2023, 43(4): 1013-1020. |
[15] | Hao WANG, Zicheng WANG, Chao ZHANG, Yunsheng MA. Generative adversarial network based data uncertainty quantification method [J]. Journal of Computer Applications, 2023, 43(4): 1094-1101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||